当前位置: 首页 > news >正文

Spring集成Redis|通用Redis工具类

一、基础使用

概述

在SpringBoot中一般使用RedisTemplate提供的方法来操作Redis。那么使用SpringBoot整合Redis需要

那些步骤呢。

1、 JedisPoolConfig (这个是配置连接池)

2、 RedisConnectionFactory 这个是配置连接信息,这里的RedisConnectionFactory是一个接

口,我们需要使用它的实现类。

3、 RedisTemplate 基本操作

二、导入依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

三、yaml配置

spring:redis:host: 127.0.0.1port: 6379password: 123456jedis:pool:max-active: 8max-wait: -1msmax-idle: 500min-idle: 0lettuce:shutdown-timeout: 0ms

四、配置RedisTemplate

  /*** @description:* @author: Leon* @date: 2025/1/8  18:28*/ 
@Configuration
public class RedisConfig {@Bean@SuppressWarnings("all")public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {RedisTemplate<String, Object> template = new RedisTemplate<String, Object>();template.setConnectionFactory(factory);Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);ObjectMapper om = new ObjectMapper();om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);jackson2JsonRedisSerializer.setObjectMapper(om);StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();// key采用String的序列化方式template.setKeySerializer(stringRedisSerializer);// hash的key也采用String的序列化方式template.setHashKeySerializer(stringRedisSerializer);// value序列化方式采用jacksontemplate.setValueSerializer(jackson2JsonRedisSerializer);// hash的value序列化方式采用jacksontemplate.setHashValueSerializer(jackson2JsonRedisSerializer);template.afterPropertiesSet();return template;}
}

五、封装工具类

package com.jingjie.meta.infra.util;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;/*** @description: Redis工具类* @author: Leon* @date: 2025/1/8  17:37*/
@Component
public final class RedisUtils {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;
// =============================common============================/*** 指定缓存失效时间** @param key  键* @param time 时间(秒)*/public boolean expire(String key, long time) {try {if (time > 0) {redisTemplate.expire(key, time, TimeUnit.SECONDS);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 根据key 获取过期时间** @param key 键 不能为null* @return 时间(秒) 返回0代表为永久有效*/public long getExpire(String key) {return redisTemplate.getExpire(key, TimeUnit.SECONDS);}/*** 判断key是否存在** @param key 键* @return true 存在 false不存在*/public boolean hasKey(String key) {try {return redisTemplate.hasKey(key);} catch (Exception e) {e.printStackTrace();return false;}}/*** 删除缓存** @param key 可以传一个值 或多个*/@SuppressWarnings("unchecked")public void del(String... key) {if (key != null && key.length > 0) {if (key.length == 1) {redisTemplate.delete(key[0]);} else {redisTemplate.delete((Collection<String>) CollectionUtils.arrayToList(key));}}}
// ============================String=============================/*** 普通缓存获取** @param key 键* @return 值*/public Object get(String key) {return key == null ? null : redisTemplate.opsForValue().get(key);}/*** 普通缓存放入** @param key   键* @param value 值* @return true成功 false失败*/public boolean set(String key, Object value) {try {redisTemplate.opsForValue().set(key, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 普通缓存放入并设置时间** @param key   键* @param value 值* @param time  时间(秒) time要大于0 如果time小于等于0 将设置无限期* @return true成功 false 失败*/public boolean set(String key, Object value, long time) {try {if (time > 0) {redisTemplate.opsForValue().set(key, value, time,TimeUnit.SECONDS);} else {set(key, value);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 递增** @param key   键* @param delta 要增加几(大于0)*/public long incr(String key, long delta) {if (delta < 0) {throw new RuntimeException("递增因子必须大于0");}return redisTemplate.opsForValue().increment(key, delta);}/*** 递减** @param key   键* @param delta 要减少几(小于0)*/public long decr(String key, long delta) {if (delta < 0) {throw new RuntimeException("递减因子必须大于0");}return redisTemplate.opsForValue().increment(key, -delta);}
// ================================Map=================================/*** HashGet** @param key  键 不能为null* @param item 项 不能为null*/public Object hget(String key, String item) {return redisTemplate.opsForHash().get(key, item);}/*** 获取hashKey对应的所有键值** @param key 键* @return 对应的多个键值*/public Map<Object, Object> hmget(String key) {return redisTemplate.opsForHash().entries(key);}/*** HashSet** @param key 键* @param map 对应多个键值*/public boolean hmset(String key, Map<String, Object> map) {try {redisTemplate.opsForHash().putAll(key, map);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** HashSet 并设置时间** @param key  键* @param map  对应多个键值* @param time 时间(秒)* @return true成功 false失败*/public boolean hmset(String key, Map<String, Object> map, long time) {try {redisTemplate.opsForHash().putAll(key, map);if (time > 0) {expire(key, time);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 向一张hash表中放入数据,如果不存在将创建** @param key   键* @param item  项* @param value 值* @return true 成功 false失败*/public boolean hset(String key, String item, Object value) {try {redisTemplate.opsForHash().put(key, item, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 向一张hash表中放入数据,如果不存在将创建** @param key   键* @param item  项* @param value 值* @param time  时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间* @return true 成功 false失败*/public boolean hset(String key, String item, Object value, long time) {try {redisTemplate.opsForHash().put(key, item, value);if (time > 0) {expire(key, time);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 删除hash表中的值** @param key 键 不能为nul*            l* @param item 项 可以使多个 不能为null*/public void hdel(String key, Object... item) {redisTemplate.opsForHash().delete(key, item);}/*** 判断hash表中是否有该项的值** @param key  键 不能为null* @param item 项 不能为null* @return true 存在 false不存在*/public boolean hHasKey(String key, String item) {return redisTemplate.opsForHash().hasKey(key, item);}/*** hash递增 如果不存在,就会创建一个 并把新增后的值返回** @param key  键* @param item 项* @param by   要增加几(大于0)*/public double hincr(String key, String item, double by) {return redisTemplate.opsForHash().increment(key, item, by);}/*** hash递减** @param key  键* @param item 项* @param by   要减少记(小于0)*/public double hdecr(String key, String item, double by) {return redisTemplate.opsForHash().increment(key, item, -by);}
// ============================set=============================/*** 根据key获取Set中的所有值** @param key 键*/public Set<Object> sGet(String key) {try {return redisTemplate.opsForSet().members(key);} catch (Exception e) {e.printStackTrace();return null;}}/*** 根据value从一个set中查询,是否存在** @param key   键* @param value 值* @return true 存在 false不存在*/public boolean sHasKey(String key, Object value) {try {return redisTemplate.opsForSet().isMember(key, value);} catch (Exception e) {e.printStackTrace();return false;}}/*** 将数据放入set缓存** @param key    键* @param values 值 可以是多个* @return 成功个数*/public long sSet(String key, Object... values) {try {return redisTemplate.opsForSet().add(key, values);} catch (Exception e) {e.printStackTrace();return 0;}}/*** 将set数据放入缓存** @param key    键* @param time   时间(秒)* @param values 值 可以是多个* @return 成功个数*/public long sSetAndTime(String key, long time, Object... values) {try {Long count = redisTemplate.opsForSet().add(key, values);if (time > 0)expire(key, time);return count;} catch (Exception e) {e.printStackTrace();return 0;}}/*** 获取set缓存的长* 度*** @param key 键*/public long sGetSetSize(String key) {try {return redisTemplate.opsForSet().size(key);} catch (Exception e) {e.printStackTrace();return 0;}}/*** 移除值为value的** @param key    键* @param values 值 可以是多个* @return 移除的个数*/public long setRemove(String key, Object... values) {try {Long count = redisTemplate.opsForSet().remove(key, values);return count;} catch (Exception e) {e.printStackTrace();return 0;}}
// ===============================list=================================/*** 获取list缓存的内容** @param key   键* @param start 开始* @param end   结束 0 到 -1代表所有值*/public List<Object> lGet(String key, long start, long end) {try {return redisTemplate.opsForList().range(key, start, end);} catch (Exception e) {e.printStackTrace();return null;}}/*** 获取list缓存的长度** @param key 键*/public long lGetListSize(String key) {try {return redisTemplate.opsForList().size(key);} catch (Exception e) {e.printStackTrace();return 0;}}/*** 通过索引 获取list中的值** @param key   键* @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0*              时,-1,表尾,-2倒数第二个元素,依次类推*/public Object lGetIndex(String key, long index) {try {return redisTemplate.opsForList().index(key, index);} catch (Exception e) {e.printStackTrace();return null;}}/*** 将list放入缓存** @param key   键* @param value 值*/public boolean lSet(String key, Object value) {try {redisTemplate.opsForList().rightPush(key, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 将list放入缓存** @param key   键* @param value 值* @param time  时间(秒)*/public boolean lSet(String key, Object value, long time) {try {redisTemplate.opsForList().rightPush(key, value);if (time > 0)expire(key, time);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 将list放入缓存** @param key   键* @param value 值* @return*/public boolean lSet(String key, List<Object> value) {try {redisTemplate.opsForList().rightPushAll(key, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 将list放入缓存** @param key   键* @param value 值* @param time  时间(秒)* @return*/public boolean lSet(String key, List<Object> value, long time) {try {redisTemplate.opsForList().rightPushAll(key, value);if (time > 0)expire(key, time);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 根据索引修改list中的某条数据** @param key   键* @param index 索引* @param value 值* @return*/public boolean lUpdateIndex(String key, long index, Object value) {try {redisTemplate.opsForList().set(key, index, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 移除N个值为value** @param key   键* @param count 移除多少个* @param value 值* @return 移除的个数*/public long lRemove(String key, long count, Object value) {try {Long remove = redisTemplate.opsForList().remove(key, count,value);return remove;} catch (Exception e) {e.printStackTrace();return 0;}}
}

相关文章:

Spring集成Redis|通用Redis工具类

一、基础使用 概述 在SpringBoot中一般使用RedisTemplate提供的方法来操作Redis。那么使用SpringBoot整合Redis需要 那些步骤呢。 1、 JedisPoolConfig (这个是配置连接池) 2、 RedisConnectionFactory 这个是配置连接信息&#xff0c;这里的RedisConnectionFactory是一个接 …...

Vue中设置报错页面和“Uncaught runtime errors”弹窗关闭

文章目录 前言操作步骤大纲1.使用Vue自带的报错捕获机制添加报错信息2.在接口报错部分添加相同机制3.把报错信息添加到Vuex中方便全局使用4.添加报错页面备用5.app页面添加if判断替换报错界面 效果备注&#xff1a;vue项目中Uncaught runtime errors:怎样关闭 前言 在开发Vue项…...

【力扣】219. 存在重复元素 II

题目 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a…...

头歌实训作业 算法设计与分析-贪心算法(第5关:求解流水作业调度问题)

问题描述 有 n 个作业&#xff08;编号为1&#xff5e;n&#xff09;要在由两台机器 M 1和 M 2 组成的流水线上完成加工。每个作业加工的顺序都是先在 M 1​上加工&#xff0c;然后在 M 2 上加工。 M 1 和 M 2 加工作业 i 所需的时间分别为 a i 和 b i&#xff08;1≤i≤n&am…...

Hadoop•搭建完全分布式集群

听说这里是目录哦 一、安装Hadoop&#x1f955;二、配置Hadoop系统环境变量&#x1f96e;三、验证Hadoop系统环境变量是否配置成功&#x1f9c1;四、修改Hadoop配置文件&#x1f36d;五、分发Hadoop安装目录&#x1f9cb;六、分发系统环境变量文件&#x1f368;七、格式化HDFS文…...

SQL-leetcode—1141. 查询近30天活跃用户数

1141. 查询近30天活跃用户数 表&#xff1a;Activity ---------------------- | Column Name | Type | ---------------------- | user_id | int | | session_id | int | | activity_date | date | | activity_type | enum | ---------------------- 该表没有包含重复数据。 …...

总结与展望,龙蜥社区第 30 次运营委员会会议线上召开

2025 年 1 月 20 日&#xff0c;龙蜥社区召开了第 30 次运营委员会线上会议&#xff0c;来自 24 家理事单位的 22 位委员及委员代表出席&#xff0c;本次会议由运营委员凝思软件李晨斌主持。会上总结和回顾了龙蜥社区 1 月运营发展情况&#xff0c;同步了龙蜥社区 3 大运营目标…...

idea对jar包内容进行反编译

1.先安装一下这个插件java Bytecode Decompiler 2.找到这个插件的路径&#xff0c;在idea的plugins下面的lib文件夹内&#xff1a;java-decompiler.jar。下面是我自己本地的插件路径&#xff0c;以作参考&#xff1a; D:\dev\utils\idea\IntelliJ IDEA 2020.1.3\plugins\java-d…...

c++----------------------多态

1.多态 1.1多态的概念 多态(polymorphism)的概念&#xff1a;通俗来说&#xff0c;就是多种形态。多态分为编译时多态(静态多态)和运⾏时多 态(动态多态)&#xff0c;这⾥我们重点讲运⾏时多态&#xff0c;编译时多态(静态多态)和运⾏时多态(动态多态)。编译时 多态(静态多态)…...

C语言 指针_野指针 指针运算

野指针&#xff1a; 概念&#xff1a;野指针就是指针指向的位置是不可知的&#xff08;随机的、不正确的、没有明确限制的&#xff09; 指针非法访问&#xff1a; int main() {int* p;//p没有初始化&#xff0c;就意味着没有明确的指向//一个局部变量不初始化&#xff0c;放…...

【JavaEE进阶】Spring留言板实现

目录 &#x1f38d;预期结果 &#x1f340;前端代码 &#x1f384;约定前后端交互接口 &#x1f6a9;需求分析 &#x1f6a9;接口定义 &#x1f333;实现服务器端代码 &#x1f6a9;lombok介绍 &#x1f6a9;代码实现 &#x1f334;运行测试 &#x1f384;前端代码实…...

第25篇 基于ARM A9处理器用C语言实现中断<一>

Q&#xff1a;怎样理解基于ARM A9处理器用C语言实现中断的过程呢&#xff1f; A&#xff1a;同样以一段使用C语言实现中断的主程序为例介绍&#xff0c;和汇编语言实现中断一样这段代码也使用了定时器中断和按键中断。执行该主程序会在DE1-SoC的红色LED上显示流水灯&#xf…...

面向通感一体化的非均匀感知信号设计

文章目录 1 非均匀信号设计的背景分析1.1 基于OFDM波形的感知信号1.2 非均匀信号设计的必要性和可行性1.2 非均匀信号设计的必要性和可行性 3 通感一体化系统中的非均匀信号设计方法3.1 非均匀信号的设计流程&#xff08;1&#xff09;均匀感知信号设计&#xff08;2&#xff0…...

修改docker共享内存shm-size

法1&#xff1a;在创建容器时增加共享内存大小 nvidia-docker run -it -p 10000:22 --name"zm" -v /home/zm:/data ufoym/deepo:all-cu101 /bin/bash --shm-size20G法2&#xff1a;修改正在运行的容器的共享内存设置 查看容器、共享内存 docker ps -a df -lh | gr…...

WIN11 UEFI漏洞被发现, 可以绕过安全启动机制

近日&#xff0c;一个新的UEFI漏洞被发现&#xff0c;可通过多个系统恢复工具传播&#xff0c;微软已经正式将该漏洞标记为追踪编号“CVE-2024-7344”。根据报告的说明&#xff0c;该漏洞能让攻击者绕过安全启动机制&#xff0c;并部署对操作系统隐形的引导工具包。 据TomsH…...

网安加·百家讲坛 | 樊山:数据安全之威胁建模

作者简介&#xff1a;樊山&#xff0c;锦联世纪教育能源工业互联网数字安全CSM(新能源运维师)课程特聘培训讲师&#xff0c;哈尔滨工业大学&#xff08;深圳&#xff09;信飞合创数据合规联合实验室特聘专家&#xff0c;武汉赛博网络安全人才研究中心资深专家&#xff1b;近24年…...

jQuery阶段总结(二维表+思维导图)

引言 经过23天的学习&#xff0c;期间有期末考试&#xff0c;有放假等插曲。本来应该在学校里学习&#xff0c;但是特殊原因&#xff0c;让回家了。但是在家学习的过程&#xff0c;虽然在学&#xff0c;很让我感觉到不一样。但是效果始终还是差点的&#xff0c;本来17、18号左右…...

【LLM】RedisSearch 向量相似性搜索在 SpringBoot 中的实现

整理不易&#xff0c;请不要吝啬你的赞和收藏。 1. 前言 写这篇文章挺不容易的&#xff0c;网络上对于 SpringBoot 实现 Redis 向量相似性搜索的文章总体来说篇幅较少&#xff0c;并且这些文章很多都写得很粗糙&#xff0c;或者不是我想要的实现方式&#xff0c;所以我不得不阅…...

如何为64位LabVIEW配置正确的驱动程序

在安装 64位 LabVIEW 后&#xff0c;确保驱动程序正确配置是关键。如果您首先安装了 32位 LabVIEW 和相关驱动&#xff0c;然后安装了 64位 LabVIEW&#xff0c;需要确保为 64位 LabVIEW 安装和配置适当的驱动程序&#xff0c;才能正常访问硬件设备。以下是详细步骤&#xff1a…...

Redis(5,jedis和spring)

在前面的学习中&#xff0c;只是学习了各种redis的操作&#xff0c;都是在redis命令行客户端操作的&#xff0c;手动执行的&#xff0c;更多的时候就是使用redis的api&#xff08;&#xff09;&#xff0c;进一步操作redis程序。 在java中实现的redis客户端有很多&#xff0c;…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...