当前位置: 首页 > news >正文

python3+TensorFlow 2.x(四)反向传播

目录

反向传播算法

反向传播算法基本步骤:

反向中的参数变化

总结


反向传播算法

反向传播算法(Backpropagation)是训练人工神经网络时使用的一个重要算法,它是通过计算梯度并优化神经网络的权重来最小化误差。反向传播算法的核心是基于链式法则的梯度下降优化方法,通过计算误差对每个权重的偏导数来更新网络中的参数。

反向传播算法基本步骤:

前向传播:将输入数据传递通过神经网络的各层,计算每一层的输出。
计算损失:根据输出和实际标签计算损失(通常使用均方误差或交叉熵等作为损失函数)。
反向传播:根据损失函数对每个参数(如权重、偏置)计算梯度。梯度的计算通过链式法则进行反向传播,直到达到输入层。
更新权重:使用梯度下降算法来更新每一层的权重和偏置,使得损失函数最小化。

链式推到:https://blog.csdn.net/dingyahui123/category_6945552.html?spm=1001.2014.3001.5482

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.datasets import mnist
# 加载 MNIST 数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()# 归一化数据并将其形状调整为 (N, 784),因为每张图片是 28x28 像素
train_images = train_images.reshape(-1, 28*28) / 255.0
test_images = test_images.reshape(-1, 28*28) / 255.0# 转换标签为 one-hot 编码
train_labels = np.eye(10)[train_labels]
test_labels = np.eye(10)[test_labels]
# 定义激活函数
def sigmoid(x):return 1 / (1 + np.exp(-x))# 定义激活函数的导数
def sigmoid_derivative(x):return x * (1 - x)# 网络架构参数
input_size = 28 * 28  # 输入层的大小
hidden_size = 128     # 隐藏层的大小
output_size = 10      # 输出层的大小# 初始化权重和偏置
W1 = np.random.randn(input_size, hidden_size)  # 输入层到隐藏层的权重
b1 = np.zeros((1, hidden_size))  # 隐藏层的偏置
W2 = np.random.randn(hidden_size, output_size)  # 隐藏层到输出层的权重
b2 = np.zeros((1, output_size))  # 输出层的偏置
# 设置超参数
epochs = 20
learning_rate = 0.1
batch_size = 64# 训练过程
for epoch in range(epochs):for i in range(0, len(train_images), batch_size):# 选择当前batch的数据X_batch = train_images[i:i+batch_size]y_batch = train_labels[i:i+batch_size]# 前向传播z1 = np.dot(X_batch, W1) + b1a1 = sigmoid(z1)z2 = np.dot(a1, W2) + b2a2 = sigmoid(z2)# 计算损失的梯度output_error = a2 - y_batch  # 损失函数的梯度output_delta = output_error * sigmoid_derivative(a2)hidden_error = output_delta.dot(W2.T)hidden_delta = hidden_error * sigmoid_derivative(a1)# 更新权重和偏置W2 -= learning_rate * a1.T.dot(output_delta)b2 -= learning_rate * np.sum(output_delta, axis=0, keepdims=True)W1 -= learning_rate * X_batch.T.dot(hidden_delta)b1 -= learning_rate * np.sum(hidden_delta, axis=0, keepdims=True)# 每10轮输出一次损失if epoch % 10 == 0:loss = np.mean(np.square(a2 - y_batch))print(f"Epoch {epoch}, Loss: {loss}")
# 测试模型
z1 = np.dot(test_images, W1) + b1
a1 = sigmoid(z1)
z2 = np.dot(a1, W2) + b2
a2 = sigmoid(z2)# 计算准确率
predictions = np.argmax(a2, axis=1)
true_labels = np.argmax(test_labels, axis=1)
accuracy = np.mean(predictions == true_labels)print(f"Test Accuracy: {accuracy * 100:.2f}%")
# 可视化前5个测试图像及其预测结果
for i in range(5):plt.imshow(test_images[i].reshape(28, 28), cmap='gray')plt.title(f"Predicted: {predictions[i]}, Actual: {true_labels[i]}")plt.show()

 

反向中的参数变化

import numpy as np
import matplotlib.pyplot as plt
import imageio# 激活函数和其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 生成一些示例数据
np.random.seed(0)
X = np.array([[0, 0],[0, 1],[1, 0],[1, 1]])
y = np.array([[0], [1], [1], [0]])  # XOR 问题# 初始化参数
input_layer_neurons = 2
hidden_layer_neurons = 2
output_neurons = 1
learning_rate = 0.5
epochs = 10000# 初始化权重
weights_input_hidden = np.random.uniform(size=(input_layer_neurons, hidden_layer_neurons))
weights_hidden_output = np.random.uniform(size=(hidden_layer_neurons, output_neurons))# 存储权重和图像
weights_history = []
losses = []
images = []# 训练过程
for epoch in range(epochs):# 前向传播hidden_layer_input = np.dot(X, weights_input_hidden)hidden_layer_output = sigmoid(hidden_layer_input)output_layer_input = np.dot(hidden_layer_output, weights_hidden_output)predicted_output = sigmoid(output_layer_input)loss = np.mean((y - predicted_output) ** 2)losses.append(loss)# 反向传播error = y - predicted_outputd_predicted_output = error * sigmoid_derivative(predicted_output)error_hidden_layer = d_predicted_output.dot(weights_hidden_output.T)d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)# 更新权重weights_hidden_output += hidden_layer_output.T.dot(d_predicted_output) * learning_rateweights_input_hidden += X.T.dot(d_hidden_layer) * learning_rate# 保存权重weights_history.append((weights_input_hidden.copy(), weights_hidden_output.copy()))# 每1000次迭代保存一次图像if epoch % 1000 == 0:plt.figure(figsize=(8, 6))plt.subplot(1, 2, 1)plt.title('Weights Input-Hidden')plt.imshow(weights_input_hidden, cmap='viridis', aspect='auto')plt.colorbar()plt.subplot(1, 2, 2)plt.title('Weights Hidden-Output')plt.imshow(weights_hidden_output, cmap='viridis', aspect='auto')plt.colorbar()# 保存图像plt.savefig(f'weights_epoch_{epoch}.png')plt.close()if epoch % 1000 == 0:plt.figure(figsize=(8, 6))plt.plot(losses, label='Loss')plt.title('Loss over epochs')plt.xlabel('Epochs')plt.ylabel('Loss')plt.xlim(0, epochs)plt.ylim(0, np.max(losses))plt.grid()plt.legend()# 保存图像plt.savefig(f'loss_epoch_{epoch}.png')plt.close()
# 创建 GIF
with imageio.get_writer('weights_update.gif', mode='I', duration=0.5) as writer:for epoch in range(0, epochs, 1000):image = imageio.imread(f'weights_epoch_{epoch}.png')writer.append_data(image)
# 创建 GIF
with imageio.get_writer('training_loss.gif', mode='I', duration=0.5) as writer:for epoch in range(0, epochs, 1000):image = imageio.imread(f'loss_epoch_{epoch}.png')writer.append_data(image)
# 清理生成的图像文件
import os
for epoch in range(0, epochs, 1000):os.remove(f'weights_epoch_{epoch}.png')os.remove(f'loss_epoch_{epoch}.png')print("GIF 已生成:training_loss.gif")
print("GIF 已生成:weights_update.gif")

 

总结

反向传播算法是神经网络训练中的核心技术,它通过计算损失函数相对于每个权重和偏置的梯度,利用梯度下降算法优化网络的参数。理解了反向传播的基本过程,可以进一步扩展到更复杂的网络结构,如卷积神经网络(CNN)和循环神经网络(RNN)。

相关文章:

python3+TensorFlow 2.x(四)反向传播

目录 反向传播算法 反向传播算法基本步骤: 反向中的参数变化 总结 反向传播算法 反向传播算法(Backpropagation)是训练人工神经网络时使用的一个重要算法,它是通过计算梯度并优化神经网络的权重来最小化误差。反向传播算法的核…...

Flutter 使用 flutter_inappwebview 加载 App 本地 HTML 文件

在 Flutter 开发中,加载本地 HTML 文件是一个常见的需求,尤其是在需要展示离线内容或自定义页面时。flutter_inappwebview 是一个功能强大的插件,支持加载本地文件和网络资源。本文将详细介绍如何使用 flutter_inappwebview 加载 App 本地 HT…...

Word常见问题:嵌入图片无法显示完整

场景:在Word中,嵌入式图片显示不全,一部分图片在文字下方。如: 问题原因:因段落行距导致 方法一 快捷方式 选中图片,通过"ctrl1"快捷调整为1倍行距 方法二 通过工具栏调整 选中图片&#xff0…...

为AI聊天工具添加一个知识系统 之68 详细设计 之9 三种中台和时间度量 之1

本文要点 要点 在维度0上 被分离出来 的业务中台 需求、技术中台要求、和数据中台请求 (分别在时间层/空间层/时空层上 对应一个不同种类槽的容器,分别表示业务特征Feature[3]/技术方面Aspect[3]/数据流Fluent[3]) 在维度1~3的运动过程中 从…...

On to OpenGL and 3D computer graphics

2. On to OpenGL and 3D computer graphics 声明:该代码来自:Computer Graphics Through OpenGL From Theory to Experiments,仅用作学习参考 2.1 First Program Square.cpp完整代码 /// // square.cpp // // OpenGL program to draw a squ…...

从曾国藩的经历看如何打破成长中的瓶颈

《曾国藩传》是一部充满智慧与人生哲理的传记,而曾国藩本人更是一个从“最笨”到“最智慧”的奇人。看他的成长与蜕变,不仅能感受到他如何超越自己的局限,也能从中获得关于人性、社会和历史的重要启示。曾国藩的一生让人深思,正是…...

JavaWeb学习-SpringBotWeb开发入门(HTTP协议)

(一)SpringBotWeb开发步骤 (1)创建springboot工程,并勾选开发相关依赖 (2)定义HelloController类,添加方法hello,并添加注解 (3)运行测试 (二)HTTP入门概述 创建请求页面 package com.itheima.demo3; /*请求处理类,加上注解标识为请求处理类*/import org.spr…...

数据库用户管理

数据库用户管理 1.创建用户 MySQL在安装是,会默认创建一个名位root的用户,该用户拥有超级权限,可以控制整个MySQL服务器。 在对MySQL的日常管理和操作中,通常创建一些具有适当权限的用户,尽可能的不用或少用root登录…...

BGP边界网关协议(Border Gateway Protocol)路由聚合详解

一、路由聚合 1、意义 在大规模的网络中,BGP路由表十分庞大,给设备造成了很大的负担,同时使发生路由振荡的几率也大大增加,影响网络的稳定性。 路由聚合是将多条路由合并的机制,它通过只向对等体发送聚合后的路由而…...

ASP.NET Core WebAPI的异步及返回值

目录 Action方法的异步 Action方法参数 捕捉URL占位符 捕捉QueryString的值 JSON报文体 其他方式 Action方法的异步 Action方法既可以同步也可以异步。异步Action方法的名字一般不需要以Async结尾。Web API中Action方法的返回值如果是普通数据类型,那么返回值…...

「 机器人 」仿生扑翼飞行器中的“被动旋转机制”概述

前言 在仿生扑翼飞行器的机翼设计中,模仿昆虫翼的被动旋转机制是一项关键技术。其核心思想在于:机翼旋转角度(攻角)并非完全通过主动伺服来控制,而是利用空气动力和惯性力的作用,自然地实现被动调节。以下对这种设计的背景、原理与优势进行详细说明。 1. 背景:昆虫的被动…...

「 机器人 」扑翼飞行器的数据驱动建模核心方法

前言 数据驱动建模可充分利用扑翼飞行器的已有运行数据,改进动力学模型与控制策略,并对未建模动态做出更精确的预测。在复杂的非线性飞行环境中,该方法能有效弥补传统解析建模的不足,具有较高的研究与应用价值。以下针对主要研究方向和实现步骤进行整理与阐述。 1. 数据驱动…...

个人网站搭建

搭建 LNMP环境搭建: LNMP环境指:Linux Nginx MySQL/MariaDB PHP,在debian上安装整体需要300MB的磁盘空间。MariaDB 是 MySQL 的一个分支,由 MySQL 的原开发者维护,通常在性能和优化上有所改进。由于其轻量化和与M…...

飞书项目流程入门指导手册

飞书项目流程入门指导手册 参考资料准备工作新建空间国际化配置新建工作项字段管理新建字段对接标识授权角色 流程管理基础说明流程节点配置流程节点的布局配置页面上布局按钮布局配置 流程节点驳回流程图展示自动化字段修改 局限性 参考资料 飞书官方参考文档:飞书…...

xss靶场

xss-labs下载地址&#xff1a;GitHub - do0dl3/xss-labs: xss 跨站漏洞平台 xss常见触发标签&#xff1a;XSS跨站脚本攻击实例与防御策略-CSDN博客 level-1 首先查看网页的源代码发现get传参的name的值test插入了html里头&#xff0c;还回显了payload的长度。 <!DOCTYPE …...

XML实体注入漏洞攻与防

JAVA中的XXE攻防 回显型 无回显型 cve-2014-3574...

switch组件的功能与用法

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了PageView这个Widget,本章回中将介绍Switch Widget.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 我们在这里介绍的Switch是指左右滑动的开关&#xff0c;常用来表示某项设置是打开还是关闭。Fl…...

cursor重构谷粒商城05——docker容器化技术快速入门【番外篇】

前言&#xff1a;这个系列将使用最前沿的cursor作为辅助编程工具&#xff0c;来快速开发一些基础的编程项目。目的是为了在真实项目中&#xff0c;帮助初级程序员快速进阶&#xff0c;以最快的速度&#xff0c;效率&#xff0c;快速进阶到中高阶程序员。 本项目将基于谷粒商城…...

高等数学学习笔记 ☞ 微分方程

1. 微分方程的基本概念 1. 微分方程的基本概念&#xff1a; &#xff08;1&#xff09;微分方程&#xff1a;含有未知函数及其导数或微分的方程。 举例说明微分方程&#xff1a;&#xff1b;。 &#xff08;2&#xff09;微分方程的阶&#xff1a;指微分方程中未知函数的导数…...

【探索 Kali Linux】渗透测试与网络安全的终极操作系统

探索 Kali Linux&#xff1a;渗透测试与网络安全的终极操作系统 在网络安全领域&#xff0c;Kali Linux 无疑是最受欢迎的操作系统之一。无论是专业的渗透测试人员、安全研究人员&#xff0c;还是对网络安全感兴趣的初学者&#xff0c;Kali Linux 都提供了强大的工具和灵活的环…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...