当前位置: 首页 > news >正文

【第一天】零基础入门刷题Python-算法篇-数据结构与算法的介绍(持续更新)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、Python数据结构与算法的详细介绍
    • 1.基本概念
    • 2.Python中的数据结构
      • 1. 列表(List)
      • 2. 元组(Tuple)
      • 3. 字典(Dictionary)
      • 4. 集合(Set)
      • 5. 字符串(String)
    • 3.Python中的常用算法
      • 1. 排序算法
      • 2. 搜索算法
      • 3. 递归算法
      • 4. 动态规划
      • 5. 贪心算法
      • 6. 分治算法
      • 7. 回溯算法
      • 8. 图论算法
      • 9. 字符串算法
    • 4.算法的时间复杂度和空间复杂度
      • 1. 时间复杂度
      • 2. 空间复杂度
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

第一天Python数据结构与算法的详细介绍
第二天五种常见的排序算法
第三天两种常见的搜索算法
第四天两种常见的递归算法
第五天一种常见的动态规划算法
第六天一种常见的贪心算法

提示:以下是本篇文章正文内容,下面案例可供参考

一、Python数据结构与算法的详细介绍

1.基本概念

数据结构:是指计算机中存储和组织数据的方式。不同的数据结构适用于不同的应用场景,选择合适的数据结构可以显著提高程序的运行效率。数据结构涵盖数据内容、数据之间关系和数据操作方法,具有以下设计目标:

  • 空间占用尽量少,以节省计算机内存。
  • 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。
  • 提供简洁的数据表示和逻辑信息,以便算法高效运行。

算法:是指完成特定任务的一系列步骤或规则,它在有限时间内解决特定问题的一组指令或操作步骤。算法具有以下特性:

  • 问题是明确的,包含清晰的输入和输出定义。
  • 具有可行性,能够在有限步骤、时间和内存空间下完成。
  • 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。

数据结构与算法高度相关、紧密结合,具体表现在以下三个方面:

  • 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。
  • 算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。
  • 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。

2.Python中的数据结构

Python内置了多种数据结构,涵盖了常见的线性和非线性数据结构。以下是Python中一些主要的数据结构

1. 列表(List)

  1. 列表(List):Python中最常用的内置数据结构之一,可以存储任意类型的元素,并且支持动态调整大小。 创建列表:my_list = [](空列表)或my_list = [1, 2, 3, 4, 5](包含元素的列表)。
    列表操作:添加元素my_list.append(6)、删除元素my_list.remove(3)、访问元素print(my_list[2])、列表切片print(my_list[1:4])。

2. 元组(Tuple)

  1. 元组(Tuple):不可变的序列,创建后不能修改。元组通常用于存储固定数量的元素。 创建元组:my_tuple = ()(空元组)或my_tuple = (1, 2, 3, 4, 5)(包含元素的元组)。
    元组操作:访问元素print(my_tuple[2])、元组切片print(my_tuple[1:4])。

3. 字典(Dictionary)

  1. 字典(Dictionary):键值对数据结构,支持快速查找、插入和删除操作。 创建字典:my_dict = {}(空字典)或my_dict = {‘name’: ‘Alice’, ‘age’: 25, ‘city’: ‘New York’}(包含键值对的字典)。
    字典操作:添加或更新键值对my_dict[‘age’] = 26、删除键值对del
    my_dict[‘city’]、访问值print(my_dict[‘name’])、遍历字典for key, value in
    my_dict.items(): print(f’{key}:{value}')。

4. 集合(Set)

  1. 集合(Set):无序的、不可重复的数据结构,支持集合运算如交集、并集和差集。 创建集合:my_set = set()(空集合)或my_set
    = {1, 2, 3, 4, 5}(包含元素的集合)。 集合操作:添加元素my_set.add(6)、删除元素my_set.remove(3)、集合运算(如并集my_set.union(other_set)、交集my_set.intersection(other_set)、差集my_set.difference(other_set))。

5. 字符串(String)

  1. 字符串(String):有序字符集合,支持多种字符串操作,如拼接、切片、查找等。
    此外,Python还支持其他更复杂的数据结构,如栈(Stack)、队列(Queue)、树(Tree)、图(Graph)等。

3.Python中的常用算法

以下是Python中的一些常用算法:

1. 排序算法

  1. 排序算法:将一组数据按特定顺序排列。常见的排序算法有冒泡排序、选择排序、插入排序、快速排序和归并排序等。
  • 冒泡排序:通过重复遍历要排序的数列,比较相邻元素的值,若发现逆序则交换,直到没有逆序为止。时间复杂度为O(n^2),空间复杂度为O(1)。
  • 选择排序:每次从未排序部分选择最小(或最大)元素,放到已排序部分的末尾。时间复杂度O(n^2),空间复杂度O(1)。
  • 插入排序:将每个新元素插入到已排序部分的适当位置。时间复杂度O(n^2)(最坏情况),空间复杂度O(1)。
  • 快速排序:选择一个基准元素,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据要小,然后再按此方法对这两部分数据分别进行快速排序,以达到整个数据变成有序序列。时间复杂度为O(n
    log n),空间复杂度为O(log n)(递归栈空间)。
  • 归并排序:采用分治法,将数组分成两半,递归排序后合并。时间复杂度O(n log n),空间复杂度O(n)(需要额外空间合并)。

2. 搜索算法

  1. 搜索算法:在数据集中查找特定元素。常见的搜索算法有线性搜索和二分搜索等。
  • 线性搜索:从数据集的第一个元素开始,依次比较每个元素,直到找到目标元素或搜索完整个数据集为止。时间复杂度为O(n),空间复杂度为O(1)。
  • 二分搜索:要求数据集必须是有序的,通过不断将搜索范围减半来查找目标元素。时间复杂度为O(log n),空间复杂度为O(1)。

3. 递归算法

  1. 递归算法:函数调用自身来解决问题的编程技巧。递归通常用于分治法、树和图的遍历等。
  • 斐波那契数列:通过递归调用自身来计算斐波那契数列的第n项。时间复杂度为O(2^n),空间复杂度为O(n)(递归栈空间)。
  • 阶乘:通过递归调用自身来计算一个数的阶乘。时间复杂度为O(n),空间复杂度为O(n)(递归栈空间)。

4. 动态规划

  1. 动态规划:解决最优化问题,通过将问题分解为子问题,并记录子问题的解以避免重复计算。时间复杂度和空间复杂度依具体问题而定,但通常较低于朴素递归解法。

5. 贪心算法

  1. 贪心算法:在每一步选择中都采取最好或最优(即最有利)的选择,从而希望能够导致结果是全局最好或最优的算法。时间复杂度依具体问题而定。

6. 分治算法

  1. 分治算法
    将问题划分为几个规模较小的子问题分别解决,然后将子问题的解合并得到原问题的解。快速排序和归并排序是分治算法的典型例子。

7. 回溯算法

  1. 回溯算法:通过搜索所有可能的候选解来找出所有解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化来丢弃该解,即“回溯”并尝试另一个可能的候选解。时间复杂度通常很高,因为需要探索所有可能的解空间。

8. 图论算法

  1. 图论算法
  • 深度优先搜索(DFS)
    用途:用于图的遍历或路径查找。
    时间复杂度:O(V+E),其中V是顶点数,E是边数。
    空间复杂度:O(V)(递归栈空间)。
  • 广度优先搜索(BFS)
    用途:用于图的遍历或最短路径查找(无权图)。
    时间复杂度:O(V+E)。
    空间复杂度:O(V)(队列空间)。
  • Dijkstra算法
    用途:用于计算单源最短路径(有权图)。
    时间复杂度:O(V^2)(朴素实现)或O((V+E) log V)(优先队列实现)。
    空间复杂度:O(V)。
    最小生成树算法:
  • Prim算法
    用途:用于求解最小生成树。
    时间复杂度:
    使用邻接矩阵:O(V^2)。
    使用斐波那契堆等数据结构:O(E log V)。
    空间复杂度:根据具体实现而定,通常与顶点数和边的数量相关。
  • Kruskal算法
    用途:用于求解最小生成树。
    时间复杂度:O(E log E),其中E是边的数量。
    空间复杂度:O(E)(存储边)和O(V)(并查集数据结构)。
  • Floyd-Warshall算法
    用途:用于计算所有顶点对之间的最短路径(有权图)。
    时间复杂度:O(V^3),其中V是顶点数。注意这里的复杂度是立方,与上述算法不同。
    空间复杂度:O(V^2)(存储距离矩阵)。

9. 字符串算法

  1. 字符串算法
  • KMP算法:用于字符串匹配,时间复杂度O(n+m),其中n和m分别是文本和模式的长度。空间复杂度O(m)。
  • Rabin-Karp算法:基于哈希的字符串匹配算法,时间复杂度平均O(n+m),最坏O(n*m)。空间复杂度O(1)(不考虑哈希表)。

4.算法的时间复杂度和空间复杂度

1. 时间复杂度

  1. 时间复杂度:是指算法运行时间随输入规模增长的变化情况。常见的时间复杂度包括常数时间O(1)、线性时间O(n)、对数时间O(log n)、线性对数时间O(n log n)、平方时间O(n2)、立方时间O(n3)和指数时间O(2^n)等。

2. 空间复杂度

  1. 空间复杂度:是指算法运行时所需的存储空间随输入规模增长的变化情况。空间复杂度主要衡量算法在运行过程中临时占用存储空间的大小。 在实际应用中,需要根据具体问题的需求和约束条件,选择合适的数据结构和算法,以优化程序的性能。同时,也需要关注算法的时间复杂度和空间复杂度,以确保程序在可接受的范围内运行。

总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文简单介绍数据结构与算法的介绍。

相关文章:

【第一天】零基础入门刷题Python-算法篇-数据结构与算法的介绍(持续更新)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.基本概念2.Python中的数据结构1. 列表(List)2. 元组(Tuple)3. 字典&#…...

租房管理系统实现智能化租赁提升用户体验与运营效率

内容概要 在当今快速发展的租赁市场中,租房管理系统的智能化转型显得尤为重要。它不仅帮助房东和租客之间建立更高效的沟通桥梁,还优化了整个租赁流程。通过智能化技术,这套系统能够自动处理资产管理、合同签署、财务管理等所有关键环节。这…...

python3+TensorFlow 2.x(四)反向传播

目录 反向传播算法 反向传播算法基本步骤: 反向中的参数变化 总结 反向传播算法 反向传播算法(Backpropagation)是训练人工神经网络时使用的一个重要算法,它是通过计算梯度并优化神经网络的权重来最小化误差。反向传播算法的核…...

Flutter 使用 flutter_inappwebview 加载 App 本地 HTML 文件

在 Flutter 开发中,加载本地 HTML 文件是一个常见的需求,尤其是在需要展示离线内容或自定义页面时。flutter_inappwebview 是一个功能强大的插件,支持加载本地文件和网络资源。本文将详细介绍如何使用 flutter_inappwebview 加载 App 本地 HT…...

Word常见问题:嵌入图片无法显示完整

场景:在Word中,嵌入式图片显示不全,一部分图片在文字下方。如: 问题原因:因段落行距导致 方法一 快捷方式 选中图片,通过"ctrl1"快捷调整为1倍行距 方法二 通过工具栏调整 选中图片&#xff0…...

为AI聊天工具添加一个知识系统 之68 详细设计 之9 三种中台和时间度量 之1

本文要点 要点 在维度0上 被分离出来 的业务中台 需求、技术中台要求、和数据中台请求 (分别在时间层/空间层/时空层上 对应一个不同种类槽的容器,分别表示业务特征Feature[3]/技术方面Aspect[3]/数据流Fluent[3]) 在维度1~3的运动过程中 从…...

On to OpenGL and 3D computer graphics

2. On to OpenGL and 3D computer graphics 声明:该代码来自:Computer Graphics Through OpenGL From Theory to Experiments,仅用作学习参考 2.1 First Program Square.cpp完整代码 /// // square.cpp // // OpenGL program to draw a squ…...

从曾国藩的经历看如何打破成长中的瓶颈

《曾国藩传》是一部充满智慧与人生哲理的传记,而曾国藩本人更是一个从“最笨”到“最智慧”的奇人。看他的成长与蜕变,不仅能感受到他如何超越自己的局限,也能从中获得关于人性、社会和历史的重要启示。曾国藩的一生让人深思,正是…...

JavaWeb学习-SpringBotWeb开发入门(HTTP协议)

(一)SpringBotWeb开发步骤 (1)创建springboot工程,并勾选开发相关依赖 (2)定义HelloController类,添加方法hello,并添加注解 (3)运行测试 (二)HTTP入门概述 创建请求页面 package com.itheima.demo3; /*请求处理类,加上注解标识为请求处理类*/import org.spr…...

数据库用户管理

数据库用户管理 1.创建用户 MySQL在安装是,会默认创建一个名位root的用户,该用户拥有超级权限,可以控制整个MySQL服务器。 在对MySQL的日常管理和操作中,通常创建一些具有适当权限的用户,尽可能的不用或少用root登录…...

BGP边界网关协议(Border Gateway Protocol)路由聚合详解

一、路由聚合 1、意义 在大规模的网络中,BGP路由表十分庞大,给设备造成了很大的负担,同时使发生路由振荡的几率也大大增加,影响网络的稳定性。 路由聚合是将多条路由合并的机制,它通过只向对等体发送聚合后的路由而…...

ASP.NET Core WebAPI的异步及返回值

目录 Action方法的异步 Action方法参数 捕捉URL占位符 捕捉QueryString的值 JSON报文体 其他方式 Action方法的异步 Action方法既可以同步也可以异步。异步Action方法的名字一般不需要以Async结尾。Web API中Action方法的返回值如果是普通数据类型,那么返回值…...

「 机器人 」仿生扑翼飞行器中的“被动旋转机制”概述

前言 在仿生扑翼飞行器的机翼设计中,模仿昆虫翼的被动旋转机制是一项关键技术。其核心思想在于:机翼旋转角度(攻角)并非完全通过主动伺服来控制,而是利用空气动力和惯性力的作用,自然地实现被动调节。以下对这种设计的背景、原理与优势进行详细说明。 1. 背景:昆虫的被动…...

「 机器人 」扑翼飞行器的数据驱动建模核心方法

前言 数据驱动建模可充分利用扑翼飞行器的已有运行数据,改进动力学模型与控制策略,并对未建模动态做出更精确的预测。在复杂的非线性飞行环境中,该方法能有效弥补传统解析建模的不足,具有较高的研究与应用价值。以下针对主要研究方向和实现步骤进行整理与阐述。 1. 数据驱动…...

个人网站搭建

搭建 LNMP环境搭建: LNMP环境指:Linux Nginx MySQL/MariaDB PHP,在debian上安装整体需要300MB的磁盘空间。MariaDB 是 MySQL 的一个分支,由 MySQL 的原开发者维护,通常在性能和优化上有所改进。由于其轻量化和与M…...

飞书项目流程入门指导手册

飞书项目流程入门指导手册 参考资料准备工作新建空间国际化配置新建工作项字段管理新建字段对接标识授权角色 流程管理基础说明流程节点配置流程节点的布局配置页面上布局按钮布局配置 流程节点驳回流程图展示自动化字段修改 局限性 参考资料 飞书官方参考文档:飞书…...

xss靶场

xss-labs下载地址&#xff1a;GitHub - do0dl3/xss-labs: xss 跨站漏洞平台 xss常见触发标签&#xff1a;XSS跨站脚本攻击实例与防御策略-CSDN博客 level-1 首先查看网页的源代码发现get传参的name的值test插入了html里头&#xff0c;还回显了payload的长度。 <!DOCTYPE …...

XML实体注入漏洞攻与防

JAVA中的XXE攻防 回显型 无回显型 cve-2014-3574...

switch组件的功能与用法

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了PageView这个Widget,本章回中将介绍Switch Widget.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 我们在这里介绍的Switch是指左右滑动的开关&#xff0c;常用来表示某项设置是打开还是关闭。Fl…...

cursor重构谷粒商城05——docker容器化技术快速入门【番外篇】

前言&#xff1a;这个系列将使用最前沿的cursor作为辅助编程工具&#xff0c;来快速开发一些基础的编程项目。目的是为了在真实项目中&#xff0c;帮助初级程序员快速进阶&#xff0c;以最快的速度&#xff0c;效率&#xff0c;快速进阶到中高阶程序员。 本项目将基于谷粒商城…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...