R语言学习笔记之高效数据操作
一、概要
数据操作是R语言的一大优势,用户可以利用基本包或者拓展包在R语言中进行复杂的数据操作,包括排序、更新、分组汇总等。R数据操作包:data.table和tidyfst两个扩展包。
data.table是当前R中处理数据最快的工具,可以实现快速的数据汇总、连接、删除、分组计算等操作,具有稳定、速度快、省内存、特性丰富、语法简洁等特点。由于其函数语法结构相对来说较为抽象,对于初学者而言往往需要花更多的时间来掌握。
tidyfst包应运而生,用以提高data.table代码的可读性和可维护性。tidyfst包参考了tidyverse体系的语法结构,让用户能够见名知义;同时,其底层由data.table代码构成,因此实现速度非常快。对于较为复杂的data.table操作,tidyfst包提供了简便的调用函数进行实现。
资料来源:《机器学习全解(R语言版)》 黄天元 2024年7月出版
二、数据读写
在data.table包中可以使用fread和fwrite函数对csv格式的文件进行读写。
如果需要保存规模较大的数据,可以使用tidyfst包的import_fst和export_fst函数来进行数据读写,其数据保存格式为以fst为扩展名的二进制文件。它的特点就是数据高保真、读写速度快和压缩效果好,因此保存下来的fst文件往往要比csv格式占用内存更小。
library(pacman)
p_load(tidyfst,data.table)fwrite(iris,"D:/iris.csv")
ir=fread("D:/iris.csv")export_fst(iris,"D:/iris.fst")
ir=import_fst("D:/iris.fst")
三、筛选列
1、选择需要的列
library(pacman)
p_load(tidyfst,data.table)
ir=as.data.table(iris)
ir# 选取上面构造的数据框ir中的第1、3和4列,以下两种写法等价
ir %>% select_dt(1,3,4) #tidyfst
ir[,c(1,3,4)] # data.table
2、选择连续的列
可以使用“:”符号:
# 选择1到3列
ir %>% select_dt(1:3)
ir[,1:3]
3、根据变量名称选择单列
# 选择Sepal.Length列
ir %>% select_dt(Sepal.Length)
ir[,"Sepal.Length"]
4、根据变量名称选择多列
变量名称之间需要用逗号隔开
# 选择Sepal.Length和Petal.Length两列
ir %>% select_dt(Sepal.Length,Petal.Length)
ir[,c("Sepal.Length","Petal.Length")]
5、根据正则表达式筛选列
# 选择列名称包含“Sepal”的列
ir %>% select_dt("Sepal")
ir[,.SD,.SDcols=patterns("Sepal")]
6、利用特殊函数选择列
# 选择数据类型为因子的列
ir %>% select_dt(is.factor)
ir[,.SD,.SDcols = is.factor]
7、排除列
排除一些列,则可以在原来基础上加上减号来实现:
# 排除Sepal.Length和Petal.Length这两列
ir %>% select_dt(-Sepal.Length,-Petal.Length)
ir[,-c("Sepal.Length","Petal.Length")]
# 排除因子列
ir %>% select_dt(-is.factor)
ir[,.SD,.SDcols = -is.factor]
四、筛选行
1、根据单个条件筛选行
# 筛选出Sepal.Length大于7的条目
ir %>% filter_dt(Sepal.Length>7)
ir[Sepal.Length>7]
2、多条件筛选行
如果要附加多个条件,那么条件之间可以利用逻辑运算符&(与)、|(或)和!(非)进行修饰和连接。
# 筛选Species列不为versicolor且Sepal.Length大于6的条目
ir %>% filter_dt(Species != "versicolor" & Sepal.Length > 6)
ir[Species != "versicolor" & Sepal.Length > 6]
3、tidyfst包中现成的筛选函数
slice_max_dt | 获得Sepal.Length最大的10个条目 ir %>% slice_max_dt(Sepal.Length,10) | |
slice_min_dt | 获得Sepal.Length最小的10个条目 ir %>% slice_min_dt(Sepal.Length,10) | |
slice_sample_dt | 随机选择10个条目 ir %>% slice_sample_dt(10) | |
slice_dt | 根据条目的位置来进行筛选。获得ir数据框的第100行 | |
ir %>% slice_dt(100) | ir[100] | |
选择多行,则可以使用数值向量。选出第100行到第105行 | ||
ir %>% slice_dt(100:105) | ir[100:105] | |
unique | 去重 ir %>% unique() |
五、更新
更新是指对数据框的一列或多列进行修饰,或根据已有列构造新列。
mutate_dt | 新增常数列、修改列 |
mutate_when | 按照一定的条件进行列的更新 |
mutate_vars | 对多个列同时进行原位修饰 |
ir %>% mutate_dt(one=1)
ir %>% mutate_dt(Sepal.Length=Sepal.Length+1)
ir %>% mutate_when(Sepal.Width=0.2,one=1)
ir %>% mutate_vars("^Petal",function(x) x-1)
1、新增一列名为one的常数列,其所有数值均为1
2、让Sepal.Length列的所有数值加1
3、在Petal.Width等于0.2的时候新增名为one的常数列
4、让列名称以Petal开头的列都减去1
六、排序
对数据框进行排序有两种方法,一种是按照行进行排序,另一种是按照列进行排序。
arrange_dt | 按列排序 |
relocate_dt | 调整列的位置 |
ir %>% arrange_dt(Sepal.Length)
ir[order(Sepal.Length)]ir %>% arrange_dt(Sepal.Length,Sepal.Width)
ir[order(Sepal.Length,Sepal.Width)]ir %>% arrange_dt(-Sepal.Length)
ir[order(-Sepal.Length)]ir %>% relocate_dt(Species,how="first")
ir %>% relocate_dt(Species,how="last")ir %>% relocate_dt(Petal.Length,how = "after",where = Petal.Width)# 对列的位置进行重新排列
new_order=names(ir)[c(3,2,4,5,1)]
new_order
ir[,.SD,.SDcols = new_order]# 直接写上列名称
ir %>% select_mix(Petal.Length,Sepal.Width,Petal.Width,Species,Sepal.Length)
1、按照Sepal.Length列从小到大进行排列
多列:先按照Sepal.Length列进行排列,然后再按照Sepal.Width列进行排列
2、从大到小进行排列,在原来的变量之前加入负号
3、调整列的位置
把Species列放到第一列:
把Sepal.Length列放到最后一列:
七、汇总
汇总的过程是用较少信息表征较多信息的方法。
tidyfst包中使用summarise_dt函数来对数据框中的列进行汇总。
ir %>% summarise_dt(avg=mean(Sepal.Length))
ir %>% summarise_dt(mean=mean(Sepal.Length))
ir %>% summarise_when(Petal.Width==.2,avg=mean(Petal.Length))
ir %>% summarise_vars(2:4,sum)
ir %>% summarise_vars(is.numeric,sum)
八、分组计算
分组计算就是根据分组结果来对每一个组进行相同的操作。
在tidyfst包中,很多函数都具有by参数,by用来指定分组的变量。
如果需要对多个变量进行分组,那么by参数的指定方式有以下几种:
●在by参数中放入字符串,变量之间以逗号分隔(如by="vs,am");
●在by参数中放入字符向量,字符是分组的列名称(如by=c("vs","am"));
●在by参数中放入一个指定分组变量的列表(如by=list(vs,am))。
ir %>% summarise_dt(avg=mean(Sepal.Length),by=Species)
ir %>% summarise_vars(is.numeric,sum,by=Species)mt=as_dt(mtcars)
mt
mt %>% summarise_dt(avg=mean(mpg),by="vs,am")
mt %>% summarise_dt(avg=mean(mpg),by=c("vs","am"))
mt %>% summarise_dt(avg=mean(mpg),by=list(vs,am))
mt %>% summarise_dt(avg=mean(mpg),by=.(vs,am))
九、列的重命名
tidyfst包中使用rename_dt函数来对列进行重命名。对多个列进行重命名,只要用逗号隔开即可。
ir %>% rename_dt(sl=Sepal.Length)
ir %>% rename_dt(sl=Sepal.Length,sw=Sepal.Width)
ir %>% rename_with_dt(toupper)
ir %>% setNames(paste0("V",1:5))
十、多表连接
连接是指根据表格所包含的共同信息来对多个表格进行合并的过程。基本的连接可以分为内连接、全连接、左连接和右连接。
内连接又称为自然连接,该操作会从结果表中删除与其他被连接表中没有匹配行的所有行,只保留两个表格中都包含的数据条目。
全连接会保留所有表格的所有信息。
左连接则仅会保证左边(即第一个出现的)表格的信息会被完全保留,右边(第二个)表格的信息只有与第一个表格的信息匹配的才能够保留。
右连接是左连接的逆运算,即完全保留第二个表格的信息,而第一个表格中只有与第二个表格的信息匹配的内容才能保留。
还有一种特殊的连接方式叫作过滤型连接,它包括反连接和半连接。
半连接与左连接相似,但是它只保留了左表格的所有列,而右表格的列则不会放入结果。这相当于只提取了右表格的匹配列,然后与左表格进行连接。
反连接则与半连接相反,它会保留左表和右表对应列相异的部分。
workers=fread("name companyNick AcmeJohn AjaxDaniela Ajax")positions=fread("name positionJohn designerDaniela engineerCathie manager")workers
positionsworkers %>% inner_join_dt(positions)
workers %>% merge(positions)workers %>% full_join_dt(positions)
workers %>% merge(positions,all = T)workers %>% left_join_dt(positions)
workers %>% merge(positions,all.x = T)workers %>% right_join_dt(positions)
workers %>% merge(positions,all.y = T)workers %>% left_join_dt(positions,by="name")
workers %>% merge(positions,all.x = T,by="name")positions2=setNames(positions,c("worker","position"))
workers
positions2
workers %>% inner_join_dt(positions2,by=c("name"="worker"))
workers %>% inner_join_dt(positions2,on="name==worker")
workers %>% merge(positions2,by.x="name",by.y = "worker")workers %>% semi_join_dt(positions)
workers %>% anti_join_dt(positions)
十一、长宽转换
tidyfst包中的longer_dt函数实现将“宽数据”转换成“长数据”。
tidyfst包中的wider_dt函数实现“长数据”转成“宽数据”。
stocks=data.frame(time=as.Date('2009-01-01')+0:9,X=rnorm(10,0,1),Y=rnorm(10,0,2),Z=rnorm(10,0,4)
)
stocks# 转成长数据
stocks %>% longer_dt(time) -> long_stocks
long_stocksstocks %>% longer_dt(time,name="NAME",value="VALUE")# 转成宽数据
wide_stockes=long_stocks %>% wider_dt(name="name",value="value")
wide_stockes
十二、集合运算
tidyfst包函数 | data.table包函数 | |
---|---|---|
交集 | intersect_dt | fintersect |
并集 | union_dt | funion |
差集 | setdiff_dt | fsetdiff |
注意:tidyfst包会自动地把任意数据框转化为data.table格式。
十三、缺失值处理
1、删除缺失记录
na.omit函数可以删掉任意包含缺失值的行。
tidyfst包的drop_na_dt函数可以实现删除某一列中存在缺失值的条目。
2、缺失值填充
tidyfst包中的replace_na_dt函数实现填充指定的值。
tidyfst包的fill_na_dt函数实现将上一个观测值作为下面缺失的填充值。
tidyfst包中的impute_dt函数实现使用非缺失数值的均值、中位数或众数来对缺失值进行填充。
十四、列表列的应用
列表列(list column)是R语言中相对较新的一个概念,它能够根据分组把一整块数据集成在一起成为一列,而这个列的数据类型为列表(list)。在tidyfst包中可以使用nest_dt函数进行实现。
相关文章:

R语言学习笔记之高效数据操作
一、概要 数据操作是R语言的一大优势,用户可以利用基本包或者拓展包在R语言中进行复杂的数据操作,包括排序、更新、分组汇总等。R数据操作包:data.table和tidyfst两个扩展包。 data.table是当前R中处理数据最快的工具,可以实现快…...

将 OneLake 数据索引到 Elasticsearch - 第二部分
作者:来自 Elastic Gustavo Llermaly 及 Jeffrey Rengifo 本文分为两部分,第二部分介绍如何使用自定义连接器将 OneLake 数据索引并搜索到 Elastic 中。 在本文中,我们将利用第 1 部分中学到的知识来创建 OneLake 自定义 Elasticsearch 连接器…...

Linux——冯 • 诺依曼体系结构
目录 一、冯•诺依曼体系结构原理二、内存提高冯•诺依曼体系结构效率的方法三、当用QQ和朋友聊天时数据的流动过程四、关于冯诺依曼五、总结 我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系 流程&#…...

Java进阶(一)
目录 一.Java注解 什么是注解? 内置注解 元注解 二.对象克隆 什么是对象克隆? 为什么用到对象克隆 三.浅克隆深克隆 一.Java注解 什么是注解? java中注解(Annotation)又称java标注,是一种特殊的注释。 可以添加在包,类&…...

appium自动化环境搭建
一、appium介绍 appium介绍 appium是一个开源工具、支持跨平台、用于自动化ios、安卓手机和windows桌面平台上面的原生、移动web和混合应用,支持多种编程语言(python,java,Ruby,Javascript、PHP等) 原生应用和混合应用…...

Qt 5.14.2 学习记录 —— 이십 QFile和多线程
文章目录 1、QFile1、打开2、读写3、关闭4、程序5、其它功能 2、多线程1、演示2、锁 3、条件变量和信号量 1、QFile Qt有自己的一套文件体系,不过Qt也可以使用C,C,Linux的文件操作。使用Qt的文件体系和Qt自己的一些类型更好配合。 管理写入读…...
積分方程與簡單的泛函分析7.希爾伯特-施密特定理
1)def函數叫作"由核生成的(有源的)" 定义: 设 是定义在区域上的核函数。 对于函数,若存在函数使得, 则称函数是“由核生成的(有源的)”。 这里的直观理解是: 函数的“来源”可以通过核函数 与另一个函数的积分运算得到。 在积分方程理论中,这种表述常…...

使用vitepress搭建自己的博客项目
一、介绍can-vitepress-blog 什么是CAN BLOG CAN BLOG是基于vitepress二开的个人博客系统,他能够方便使用者快速构建自己的博客文章,无需繁琐的配置和复杂的代码编写。 CAN BLOG以antdv为UI设计基础,简洁大方,界面友好…...

开始步入达梦中级dba
分析内存使用需要的方法之一 disql /nolog conn sysdba/sysdbaselect value from v$parameter where nameMEMORY_LEAK_CHECK; SP_SET_PARA_VALUE(0,MEMORY_LEAK_CHECK,1); select * from V$MEM_REGINFO; select * from V$MEM_HEAP;...

如何在docker中的mysql容器内执行命令与执行SQL文件
通过 docker ps -a 查询当前运行的容器,找到想执行命令的容器名称。 docker ps -a若想执行sql文件,则将sql文件放入当前文件夹下后将项目内的 SQL 文件拷贝到 mysql 容器内部的 root下。 sudo docker cp /root/enterprise.sql mysql:/root/然后进入 my…...

S4 HANA更改Tax base Amount的字段控制
本文主要介绍在S4 HANA OP中Tax base Amount的字段控制相关设置。具体请参照如下内容: 1. 更改Tax base Amount的字段控制 以上配置用于控制FB60/FB65/FB70/FB75/MIRO的页签“Tax”界面是否可以修改“Tax base Amount”, 如果勾选Change 表示可以修改T…...

Linux权限有关
文章目录 一、添加普通用户二、Xshell下命令行的知识三、 Linux和Windows操作系统四、再探指令和Linux权限五、用户相关用户切换: 今天我们学习与Linux有关的权限等内容,以及一些零碎知识帮助我们理解Linux的系统和Xshell的原理。 本篇是在Xshell环境下执行的。 一…...

【github 使用相关】提交pr和commit message Conventional Commits 规范 代码提交的描述该写什么?
目录 Git 提交信息格式格式描述Subject(标题)Body(正文) 规范的标签(Tag)示例 CG Git 提交信息格式 格式描述 一般开源项目代码库根目录都会有一个 CONTRIBUTING.md 或者其他类似名字的文档来介绍如何开始…...

Docker—搭建Harbor和阿里云私有仓库
Harbor概述 Harbor是一个开源的企业级Docker Registry管理项目,由VMware公司开发。它的主要用途是帮助用户迅速搭建一个企业级的Docker Registry服务,提供比Docker官方公共镜像仓库更为丰富和安全的功能,特别适合企业环境使用。12 Harb…...

Maven的下载安装配置
maven的下载安装配置 maven是什么 Maven 是一个用于 Java 平台的 自动化构建工具,由 Apache 组织提供。它不仅可以用作包管理,还支持项目的开发、打包、测试及部署等一系列行为 Maven的核心功能 项目构建生命周期管理:Maven定义了项目构建…...

Rust:高性能与安全并行的编程语言
引言 在现代编程世界里,开发者面临的最大挑战之一就是如何平衡性能与安全性。在许多情况下,C/C这样的系统级编程语言虽然性能强大,但其内存管理的复杂性导致了各种安全漏洞。为了解决这些问题,Rust 作为一种新的系统级编程语言进入…...

matlab的cat()函数详解(OK)
cat函数的功能是 连接数组 功能: 按指定的维度连接多个向量 结构: C cat(dim, A, B) 按dim指定的维度连接向量A和BC cat(dim, A1, A2, A3,A4, …) 按dim指定的维度连接多个向量A1, A2,A3,A4…C cat(dim, A{:}) 将包含向量的cell或结构数组联合为一…...

将个人微信中的时间改成标准的日期时间格式
list1["10:05","上午 10:07","下午 2:07","晚上 8:07","昨天 16:07","星期天 19:27","星期二 19:27","星期四 14:27","2025年1月10日 17:43"]from datetime import datetime, time…...

centos9编译安装opensips 二【进阶篇-定制目录+模块】推荐
环境:centos9 last opensips -V version: opensips 3.6.0-dev (x86_64/linux) flags: STATS: On, DISABLE_NAGLE, USE_MCAST, SHM_MMAP, PKG_MALLOC, Q_MALLOC, F_MALLOC, HP_MALLOC, DBG_MALLOC, CC_O0, FAST_LOCK-ADAPTIVE_WAIT ADAPTIVE_WAIT_LOOPS1024, MAX_RE…...

初步搭建并使用Scrapy框架
目录 目标 版本 实战 搭建框架 获取图片链接、书名、价格 通过管道下载数据 通过多条管道下载数据 下载多页数据 目标 掌握Scrapy框架的搭建及使用,本文以爬取当当网魔幻小说为案例做演示。 版本 Scrapy 2.12.0 实战 搭建框架 第一步:在D:\pyt…...

基于SpringBoot的软件产品展示销售系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...

pycharm 运行远程环境问题 Error:Failed to prepare environment.
问题排查 拿到更详细的报错信息: Help > Diagnostic Tools > Debug Log Settings section: 添加下面的配置 com.intellij.execution.configurations.GeneralCommandLine 重显报错,我这里是再次运行代码打开 Help | Collect Logs and Diagnosti…...

Redis vs. 其他数据库:深度解析,如何选择最适合的数据库?
一、如何为项目选择合适的数据库? 选择合适的数据库是一个复杂的过程,需要综合考虑多个因素。下面几个维度来详细阐述: 1.数据模型 关系型数据库(RDBMS):适用于高度结构化、关联性强的数据,如电…...

HTB:Support[WriteUP]
目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用ldapsearch…...

导出地图为pdf文件
有时我们只是想创建能共享的pdf文件,而不是将地图打印出来,arcpy的ExportToPDF()函数可以实现该功能. 操作方法: 1.在arcmap中打开目标地图 2.导入arcpy.mapping模块 import arcpy.mapping as mapping 3.引用当前活动地图文档,把该引用赋值给变量 mxd mapping.MapDocumen…...

Linux中关于glibc包编译升级导致服务器死机或者linux命令无法使用的情况
服务器上编译glibc2.29版本导致命令不能用 Inconsistency detected by ld.so: dl-call-libc-early-init.c: 37: _dl_call_libc_early_init: Assertion sym ! NULL failed!下面是造成不可用的原因 1.编译完gcc 2.29版本后,开始做映射,以达到能使用最新版…...

Golang Gin系列-8:单元测试与调试技术
在本章中,我们将探讨如何为Gin应用程序编写单元测试,使用有效的调试技术,以及优化性能。这包括设置测试环境、为处理程序和中间件编写测试、使用日志记录、使用调试工具以及分析应用程序以提高性能。 为Gin应用程序编写单元测试 设置测试环境…...

linux如何修改密码,要在CentOS 7系统中修改密码
要在CentOS 7系统中修改密码,你可以按照以下步骤操作: 步骤 1: 登录到系统 在登录提示符 localhost login: 后输入你的用户名。输入密码并按回车键。 步骤 2: 修改密码 登录后,使用 passwd 命令来修改密码: passwd 系统会提…...

Kafka后台启动命令
#保存日志 nohup ./kafka-server-start.sh ../config/server.properties > /path/to/logfile.log 2>&1 &#不保存日志 nohup ./kafka-server-start.sh ../config/server.properties >/dev/null 2>&1 & nohup: 是一个Unix/Linux命令,用于…...

使用Cline+deepseek实现VsCode自动化编程
不知道大家有没有听说过cursor这个工具,类似于AIVsCode的结合体,只要绑定chatgpt、claude等大模型API,就可以实现对话式自助编程,简单闲聊几句便可开发一个软件应用。 但cursor受限于外网,国内用户玩不了,…...