当前位置: 首页 > news >正文

TikTok 推出了一款 IDE,用于快速构建 AI 应用

在这里插入图片描述

字节跳动(TikTok 的母公司)刚刚推出了一款名为 Trae 的新集成开发环境(IDE)。

Trae 基于 Visual Studio Code(VS Code)构建,继承了这个熟悉的平台,并加入了 AI 工具,帮助开发者更快、更轻松地构建应用——有时甚至无需编写任何代码。

如果你之前使用过 Cursor AI,Trae 可能会让你感觉很熟悉。我已经使用 Cursor 好几个月了,所以对 Trae 上手得比较快。

但我必须说,Trae 的设计更加现代、流畅,而且比 Cursor 更不让人感到压倒性。

什么是 Trae?

Trae 旨在提升开发者的生产力。Trae 的 AI 不仅仅是自动补全,它还帮助调试、重构,甚至建议注释或测试用例。

在这里插入图片描述

它与 VS Code 和 Cursor 配置兼容,方便过渡。 目前适用于 macOS,Windows 版本正在开发中。</

相关文章:

TikTok 推出了一款 IDE,用于快速构建 AI 应用

字节跳动(TikTok 的母公司)刚刚推出了一款名为 Trae 的新集成开发环境(IDE)。 Trae 基于 Visual Studio Code(VS Code)构建,继承了这个熟悉的平台,并加入了 AI 工具,帮助开发者更快、更轻松地构建应用——有时甚至无需编写任何代码。 如果你之前使用过 Cursor AI,T…...

阅读springboot源码 记录

关于 :: 双冒号 用stream的map简洁提取id&#xff0c;类似代码1 // 代码1 List<String> Ids list.stream().map(Student::getId).collect(Collectors.toList())// 代码2 List<String> Ids list.stream().map(use->{return use.getId(); }).collect(Collector…...

Linux之内存管理前世今生(一)

一个程序&#xff08;如王者荣耀&#xff09;平常是存储在硬盘上的&#xff0c;运行时才把这个程序载入内存&#xff0c;CPU才能执行。 问题&#xff1a; 这个程序载入内存的哪个位置呢&#xff1f;载入内核所在的空间吗&#xff1f;系统直接挂了。 一、虚拟内存 1.1 内存分…...

Beautiful Soup 入门指南:从零开始掌握网页解析

Beautiful Soup 入门指南&#xff1a;从零开始掌握网页解析 前言 在数据驱动的时代&#xff0c;网页数据是非常宝贵的资源。很多时候我们需要从网页上提取数据&#xff0c;进行分析和处理。Beautiful Soup 是一个非常流行的 Python 库&#xff0c;可以帮助我们轻松地解析和提…...

网络通信---MCU移植LWIP

使用的MCU型号为STM32F429IGT6&#xff0c;PHY为LAN7820A 目标是通过MCU的ETH给LWIP提供输入输出从而实现基本的Ping应答 OK废话不多说我们直接开始 下载源码 LWIP包源码&#xff1a;lwip源码 -在这里下载 ST官方支持的ETH包&#xff1a;ST-ETH支持包 这里下载 创建工程 …...

Go-并行编程新手指南

Go 并行编程新手指南 在Go语言中&#xff0c;并行编程是充分利用多核CPU资源、提升程序性能的重要手段。它的核心概念包括goroutine和channel&#xff0c;这些特性使得Go在处理并发任务时表现出色。 goroutine&#xff1a;轻量级的并发执行单元 goroutine是Go并行编程的基础…...

基于Django的个人博客系统的设计与实现

【Django】基于Django的个人博客系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 系统采用Python作为主要开发语言&#xff0c;结合Django框架构建后端逻辑&#xff0c;并运用J…...

Python爬虫获取custom-1688自定义API操作接口

一、引言 在电子商务领域&#xff0c;1688作为国内领先的B2B平台&#xff0c;提供了丰富的API接口&#xff0c;允许开发者获取商品信息、店铺信息等。其中&#xff0c;custom接口允许开发者进行自定义操作&#xff0c;获取特定的数据。本文将详细介绍如何使用Python调用1688的…...

kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记

问题描述&#xff1a; 通过从 3D 全身照片 (TBP) 中裁剪出单个病变来识别经组织学确诊的皮肤癌病例 数据集描述&#xff1a; 图像临床文本信息 评价指标&#xff1a; pAUC&#xff0c;用于保证敏感性高于指定阈值下的AUC 主流方法分析&#xff08;文本&#xff09; 基于CatBoo…...

滤波电路汇总

0、前言 1. 引言 滤波电路是电子系统中不可或缺的组成部分,其主要功能是选择性地通过或衰减特定频率范围内的信号。在现代电子技术中,滤波电路广泛应用于信号处理、通信系统、音频设备、电源设计等多个领域。通过滤波,可以去除信号中的噪声和干扰,提高信号的质量和稳定性…...

1.Template Method 模式

模式定义 定义一个操作中的算法的骨架&#xff08;稳定&#xff09;&#xff0c;而将一些步骤延迟&#xff08;变化)到子类中。Template Method 使得子类可以不改变&#xff08;复用&#xff09;一个算法的结构即可重定义&#xff08;override 重写&#xff09;该算法的某些特…...

MySQL分表自动化创建的实现方案(存储过程、事件调度器)

《MySQL 新年度自动分表创建项目方案》 一、项目目的 在数据库应用场景中&#xff0c;随着数据量的不断增长&#xff0c;单表存储数据可能会面临性能瓶颈&#xff0c;例如查询、插入、更新等操作的效率会逐渐降低。分表是一种有效的优化策略&#xff0c;它将数据分散存储在多…...

基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真。选择回归法进行最大功率点的追踪&#xff0c;使用光强和温度作为影响因素&#xff0c;电压作为输出进行建模。…...

计算机毕业设计【任务书】怎么写?

1. 什么是毕业设计任务书 毕业设计任务书是学生在毕业设计初期向指导教师提交的文档&#xff0c;主要用于说明毕业设计的选题、研究内容、目标、方法、进度安排等。 2. 撰写任务书的步骤 2.1 确定选题 选题是撰写任务书的第一步。选题应结合自身兴趣、专业方向和实际应用需…...

GRAPHARG——学习

20250106 项目git地址&#xff1a;https://github.com/microsoft/graphrag.git 版本&#xff1a;1.2.0 ### This config file contains required core defaults that must be set, along with a handful of common optional settings. ### For a full list of available setti…...

【Rust自学】15.6. RefCell与内部可变性:“摆脱”安全性限制

题外话&#xff0c;这篇文章一共4050字&#xff0c;是截止到目前为止最长的文章&#xff0c;如果你能坚持读完并理解&#xff0c;那真的很强&#xff01; 喜欢的话别忘了点赞、收藏加关注哦&#xff08;加关注即可阅读全文&#xff09;&#xff0c;对接下来的教程有兴趣的可以…...

14.模型,纹理,着色器

模型、纹理和着色器是计算机图形学中的三个核心概念&#xff0c;用通俗易懂的方式来解释&#xff1a; 1. 模型&#xff1a;3D物体的骨架 通俗解释&#xff1a; 模型就像3D物体的骨架&#xff0c;定义了物体的形状和结构。 比如&#xff0c;一个房子的模型包括墙、屋顶、窗户等…...

【C语言分支与循环结构详解】

目录 ---------------------------------------begin--------------------------------------- 一、分支结构 1. if语句 2. switch语句 二、循环结构 1. for循环 2. while循环 3. do-while循环 三、嵌套结构 结语 -----------------------------------------end----…...

新项目上传gitlab

Git global setup git config --global user.name “FUFANGYU” git config --global user.email “fyfucnic.cn” Create a new repository git clone gitgit.dev.arp.cn:casDs/sawrd.git cd sawrd touch README.md git add README.md git commit -m “add README” git push…...

qt-QtQuick笔记之常见项目类简要介绍

qt-QtQuick笔记之常见项目类简要介绍 code review! 文章目录 qt-QtQuick笔记之常见项目类简要介绍1.QQuickItem2.QQuickRectangle3.QQuickImage4.QQuickText5.QQuickBorderImage6.QQuickTextInput7.QQuickButton8.QQuickSwitch9.QQuickListView10.QQuickGridView11.QQuickPopu…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...