C++封装红黑树实现mymap和myset和模拟实现详解
文章目录
- map和set的封装
- map和set的底层
- map和set的模拟实现
- insert
- iterator实现的思路
- operator++
- operator- -
- operator[ ]
map和set的封装
介绍map和set的底层实现
map和set的底层
一份模版实例化出key的rb_tree和pair<k,v>的rb_tree
rb_tree的Key和Value不是我们之前传统意义上的key/value

迭代器也是一份模版实例化出两个不同的迭代器
所以说底层上红黑树是有两份的,一份是key的,一份是key/value的

- 通过泛型的思想实现出的模版,第二个参数不是写死的,第二个模版参数是Value决定的,Value可以是key或者是pair<const key, T>,这样既可以实现key的搜索场景,也可以实现key/value的搜索场景
- 要注意一下,源码里面模板参数是用T代表value,而内部写的value_type不是我们我们日常key/value场景中说的value,源码中的value_type反而是红黑树结点中存储的真实的数据的类型
- rb_tree的第二个模版参数已经控制了红黑树节点的存储的数据类型,为什么还要写第二个模版参数?
set的两个模版参数都是一样的,都是key,insert的都是key,find和erase的也是key。但是对于map来说,insert的是pair对象,find/erase的是key。所以set为了兼容map就传了两个模版参数
map和set的模拟实现
pair的默认比较的是first,first小就小,first不小,比较second,second小就小。
insert
insert关键是要解决插入的值是Key还pair的问题
上层用仿函数实现一个类来解决下层比较的是key还是pair的问题,下层不知道T是什么,但是上层知道,如果比较的是key上层就传key,是pair就传pair
namespace wbc
{template<class K>class set{// 为了解决不知道下层T是key还是pair的逻辑struct SetKeyOfT{// 仿函数可以解决const K& operator()(const K& key){return key;}};public:bool insert(const K& key){return _t.Insert(key);}private:RBTree<K,K,SetKeyOfT> _t;};
}namespace wbc
{template<class K, class V>class map{// 为了解决不知道下层T是key还是pair的逻辑struct MapKeyOfT{// 仿函数可以解决const pair<K, V>& operator()(const pair<K, V>& kv){return kv.first;}};private:RBTree<K, pair<K, V>,MapKeyOfT> _t;};
}
iterator实现的思路
- map和set的迭代器走的是中序遍历,begin()返回的是中序的第一个节点
- operator++核心是不看全局,只看局部,只关心当前局部的下一个节点是什么
- 中序访问的顺序:左子树,根,右子树。++,it当前节点已经访问完了,如果右不为空,访问右子树的最左节点。如果右为空,说明当前节点已经访问完了,子树也访问完了,就要访问该节点的祖先,并且要往上找。要找的是孩子是祖先的左边的那个祖先。
如果孩子在父亲的右,说明父亲访问完了,父亲在爷爷的左,下一个就访问爷爷。 - set的iterator也不支持修改,我们把set的第二个模板参数改成const K即可, RBTree<K,const K, SetKeyOfT> _t;
- map的iterator不支持修改key但是可以修改value,我们把map的第二个模板参数pair的第一个参
数改成const K即可, RBTree<K, pair<const K, V>,MapKeyOfT> _t;

operator++
- 右不为空,中序的下一个节点就是右子树中的最左节点
- 右为空,分为两种情况:
情况1:一直往上找直到找到父亲的左是当前节点,那么下一个节点就是这个父亲节点
情况2:就是一直找,找不到父亲的左是当前节点,也就是当前节点一直是父亲的右,直到找到父亲是空都没有找到,那么这棵树就走完了


Self operator++()
{if (_node->_right){// 如果右不为空,中序下一个要访问的节点就是最左(最小)节点Node* min = _node->_right;while (min->_left){min = min->_left;}_node = min;}else{// 如果右为空,祖先里面的孩子是父亲左的那个祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;
}
operator- -
访问节点
- 右子树,根,左子树。如果左树不为空,访问左树的最右节点(最大节点)。如果左树为空,说明这棵子树访问完了,如果该节点还是父亲的左,说明也访问完了,要找到节点是父亲的右,下一个访问的节点就是父亲。如果都不存在,下一个就要访问空节点了,说明这棵树访问完了。
- operator- - 和operator++正好反过来了

// RBTree.h
Self operator--()
{if (_node == nullptr) // --end(){// --end(),找到整棵树的最右节点,中序的最后一个节点// 找最右节点Node* mostright = _root;// 空树(无节点)和找最右节点while (mostright && mostright->_right){mostright = mostright->_right;}_node = mostright;}else if (_node->_left){// 如果左不为空,下一访问的是左树中的最右节点Node* most = _node->_left;while (most->_right){most = most->_right;}_node = most;}else{// 如果左为空,下一个访问的是孩子是父亲右的,那个祖先Node* cur = _node;Node* parent = _node->_parent;while (parent && cur == parent->_left){cur = parent;parent = cur->_parent;}_node = parent;}return *this;
}// Myset.h
void Print(const set<int>& s)
{set<int>::const_iterator it = s.end();while (it != s.begin()){--it;cout << *it << " ";}cout << endl;
}// test.cpp
int main()
{wbc::set<int> s;s.insert(5);s.insert(1);s.insert(2);s.insert(3);s.insert(4);s.insert(6);s.Print(s);
}

库里面实现的是有哨兵位的头节点,我们实现是end()是nullptr,但是也可以实现–end()的功能,无非就是要_root,去找整棵树的最右节点(最后一个节点),end()是最后一个节点的下一个节点


operator[ ]
operator[ ]直接调用insert即可
map实现operator[ ],修改insert的返回值为pair< Iterator,bool>
V& operator[](const K& key)
{pair<iterator, bool> ret = insert({ key,V() });return ret.first->second;// 修改value
}pair<Iterator,bool> Insert(const T& data)
{if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;// return pair<Iterator,bool>(Iterator(_root,_root),true);return { Iterator(_root,_root),true }; }KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{// 不冗余,插入失败return { Iterator(cur,_root),false }; ;}}cur = new Node(data);Node* newnode = cur;// 如果连续变色,cur不一定是新节点// 如果是非空树,插入红色节点cur->_col = RED;if (kot(parent->_data) < kot(data)){parent->_right = cur;}else if (kot(parent->_data) > kot(data)){parent->_left = cur;}// 链接父亲节点cur->_parent = parent;// parent是红色,出现了连续的红色节点,需要向上调整// 调整之后cur是根,cur的parent是nullptrwhile (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (grandfather->_left == parent){// g// p uNode* uncle = grandfather->_right;if (uncle && uncle->_col == RED){// 变色是为了处理连续的红节点,保证黑节点的数量不变,// 向上继续调整是因为grandfather的节点可能是黑节点就结束,// 可能是红节点就继续向上处理parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}else{// uncle不存在或uncle存在且为黑// g// p u// c// 右单旋if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// 双旋// g// p u// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{// g// u pNode* uncle = grandfather->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上更新cur = grandfather;parent = cur->_parent;}else{// uncle不存在或者存在且是黑// g// u p// c// 左单旋if (parent->_right == cur){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// u p// c// 双旋RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}// 无论如何结束之后根都是黑色的_root->_col = BLACK;return {Iterator(newnode,_root),true};
}
相关文章:
C++封装红黑树实现mymap和myset和模拟实现详解
文章目录 map和set的封装map和set的底层 map和set的模拟实现insertiterator实现的思路operatoroperator- -operator[ ] map和set的封装 介绍map和set的底层实现 map和set的底层 一份模版实例化出key的rb_tree和pair<k,v>的rb_tree rb_tree的Key和Value不是我们之前传统意…...
二次封装的方法
二次封装 我们开发中经常需要封装一些第三方组件,那么父组件应该怎么传值,怎么调用封装好的组件原有的属性、插槽、方法,一个个调用虽然可行,但十分麻烦,我们一起来看更简便的方法。 二次封装组件,属性怎…...
消息队列篇--通信协议篇--网络通信模型(OSI7层参考模型,TCP/IP分层模型)
一、OSI参考模型(Open Systems Interconnection Model) OSI参考模型是一个用于描述和标准化网络通信功能的七层框架。它由国际标准化组织(ISO)提出,旨在为不同的网络设备和协议提供一个通用的语言和结构,以…...
Python实现U盘数据自动拷贝
功能:当电脑上有U盘插入时,自动复制U盘内的所有内容 主要特点: 1、使用PyQt5创建图形界面,但默认隐藏 2、通过CtrlAltU组合键可以显示/隐藏界面 3、自动添加到Windows启动项 4、监控USB设备插入 5、按修改时间排序复制文件 6、静…...
汇编的使用总结
一、汇编的组成 1、汇编指令(指令集) 数据处理指令: 数据搬移指令 数据移位指令 位运算指令 算术运算指令 比较指令 跳转指令 内存读写指令 状态寄存器传送指令 异常产生指令等 2、伪指令 不是汇编指令,但是可以起到指令的作用,伪…...
DeepSeek理解概率的能力
问题: 下一个问题是概率问题。乘车时有一个人带刀子的概率是百分之一,两个人同时带刀子的概率是万分之一。有人认为如果他乘车时带上刀子,那么还有其他人带刀子的概率就是万分之一,他乘车就会安全得多。他的想法对吗?…...
AI 浪潮席卷中国年,开启科技新春新纪元
在这博主提前祝大家蛇年快乐呀!!! 随着人工智能(AI)技术的飞速发展,其影响力已经渗透到社会生活的方方面面。在中国传统节日 —— 春节期间,AI 技术也展现出了巨大的潜力,为中国年带…...
AI时代的网络安全:传统技术的落寞与新机遇
AI时代的网络安全:传统技术的落寞与新机遇 在AI技术飞速发展的浪潮中,网络安全领域正经历着前所未有的变革。一方面,传统网络安全技术在面对新型攻击手段时逐渐显露出局限性;另一方面,AI为网络安全带来了新的机遇&…...
可以称之为“yyds”的物联网开源框架有哪几个?
有了物联网的发展,我们的生活似乎也变得更加“鲜活”、有趣、便捷,包具有科技感的。在物联网(IoT)领域中,也有许多优秀的开源框架支持设备连接、数据处理、云服务等,成为被用户们广泛认可的存在。以下给大家…...
线程局部存储tls的原理和使用
一、背景 tls即Thread Local Storage,也就是线程局部存储,可在进程内,多线程按照各个线程分开进行存储。对于一些与线程上下文相关的变量,可放到tls中,减少多线程之间的数据同步的开销。 有人可能会问,我…...
RK3588平台开发系列讲解(ARM篇)ARM64底层中断处理
文章目录 一、异常级别二、异常分类2.1、同步异常2.2、异步异常三、中断向量表沉淀、分享、成长,让自己和他人都能有所收获!😄 一、异常级别 ARM64处理器确实定义了4个异常级别(Exception Levels, EL),分别是EL0到EL3。这些级别用于管理处理器的特权级别和权限,级别越高…...
CAN总线
1. 数据帧(Data Frame) 数据帧是 CAN 总线中最常用的帧类型,用于传输实际的数据。其结构如下: 起始位(Start of Frame, SOF):标志帧的开始。标识符(Identifier)&#x…...
qwen2.5-vl:阿里开源超强多模态大模型(包含使用方法、微调方法介绍)
1.简介 在 Qwen2-VL 发布后的五个月里,众多开发者基于该视觉语言模型开发了新的模型,并向 Qwen 团队提供了极具价值的反馈。在此期间,Qwen 团队始终致力于打造更具实用性的视觉语言模型。今天,Qwen 家族的最新成员——Qwen2.5-VL…...
python实现dbscan
python实现dbscan 原理 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形…...
学习数据结构(3)顺序表
1.动态顺序表的实现 (1)初始化 (2)扩容 (3)头部插入 (4)尾部插入 (5)头部删除 (这里注意要保证有效数据个数不为0) (6&a…...
正在更新丨豆瓣电影详细数据的采集与可视化分析(scrapy+mysql+matplotlib+flask)
文章目录 豆瓣电影详细数据的采集与可视化分析(scrapy+mysql+matplotlib+flask)写在前面数据采集0.注意事项1.创建Scrapy项目`douban2025`2.用`PyCharm`打开项目3.创建爬虫脚本`douban.py`4.修改`items.py`的代码5.修改`pipelines.py`代码6.修改`settings.py`代码7.启动`doub…...
wx043基于springboot+vue+uniapp的智慧物流小程序
开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…...
每日一题 430. 扁平化多级双向链表
430. 扁平化多级双向链表 简单 /*class Solution { public:Node* flatten(Node* head) {Node* tail nullptr;return dfs(head);}Node* dfs(Node* head){Node* cur head;while(cur ! nullptr){if(cur->child ! nullptr){Node* curChild getTail(cur->child);Node* te…...
UE学习日志#14 GAS--ASC源码简要分析10 GC相关
注:1.这个分类是按照源码里的注释分类的 2.本篇是通读并给出一些注释形式的,并不涉及结构性的分析 3.看之前要对UE的GAS系统的定义有初步了解 4.因为都是接口函数,有些没细看的研究那一部分的时候会细看 1 一些接口函数,但是…...
使用Python和Qt6创建GUI应用程序--关于Qt的一点介绍
关于Qt的一点介绍 Qt是一个免费的开源部件工具包,用于创建跨平台GUI应用程序,允许应用程序从Windows瞄准多个平台,macOS, Linux和Android的单一代码库。但是Qt不仅仅是一个Widget工具箱和功能内置支持多媒体,数据库&am…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
