当前位置: 首页 > news >正文

简单聊聊“DeepSeek”

目录

DeepSeek一夜火爆并受到广泛关注的优势

技术实力与创新

低成本与高效率

开源与免费

市场策略与应用领域

团队与资金优势

行业认可与媒体关注

DeepSeek在推理效率上的特别之处

多头潜在注意力(MLA)

多词元预测(MTP)

FP8混合精度训练

知识蒸馏

高推理速度

DeepSeek在哪些场景下表现最好?

科研与技术开发

企业智能化升级

教育与培训

数据分析与智能决策

DeepSeek-V3项目地址及相关信息

项目特点

性能和效率提升

评测成绩

使用方法

使用GitHub方式安装和使用DeepSeek-V3(本地部署)

克隆仓库并安装依赖

下载模型权重

模型权重转换

运行推理


DeepSeek(深度求索)是一家由量化私募巨头幻方量化旗下的AI公司,成立于2023年5月,专注于人工智能技术研发,致力于打造高性能、低成本的AI模型。

DeepSeek一夜火爆并受到广泛关注的优势

技术实力与创新
  • 高性能模型:DeepSeek-V3拥有6710亿参数,激活参数370亿,在14.8万亿token数据上进行预训练。这种庞大的模型规模和海量的训练数据,使其在自然语言处理任务中表现出色,能够处理复杂的语义理解和生成任务。
  • 创新架构:DeepSeek采用了多头潜在注意力(MLA)、混合专家架构(MoE)和FP8低精度训练等技术,这些创新使得模型在性能和效率上得到了显著提升。
  • 强化学习:DeepSeek-R1在后训练阶段广泛应用了强化学习技术,允许模型在获取更少标注数据的情况下,实现显著的性能提升。
低成本与高效率
  • 训练成本低:DeepSeek的训练成本仅为OpenAI同类模型的十分之一,API用户使用成本仅为OpenAI的5%。这种低成本、高性能的产品定位,让DeepSeek赢得了中小企业和开发者的青睐。
  • 推理效率高:DeepSeek在推理效率上具有显著优势,能够快速响应用户请求,为用户提供更加流畅的交互体验。
开源与免费
  • 开源模式:DeepSeek坚持开源和免费,用户可以自主下载与部署模型,这极大地降低了技术壁垒,促进了AI技术的普及和应用。
  • 社区支持:开源模式吸引了全球开发者社区的支持,进一步推动了模型的优化和应用开发。
市场策略与应用领域
  • 市场定位明确:DeepSeek在进入市场的初期就较为明确地选择了重点行业,并通过与行业领导者的合作,迅速建立起品牌信誉。
  • 广泛应用:DeepSeek在多个领域展现了强大的应用价值,包括自然语言处理、代码生成与编程辅助、多模态数据处理和长文本处理等。
团队与资金优势
  • 资金支持:DeepSeek的母公司幻方量化是中国头部量化对冲基金,曾管理资金规模超1000亿元,为DeepSeek提供了强大的资金支持。
  • 技术理想主义:DeepSeek的创始人梁文锋坚信AI将改变世界,坚持将技术成果开源,以推动生态发展,这种非功利性的理念吸引了众多优秀年轻人才加入。
行业认可与媒体关注
  • 行业认可:DeepSeek在专业大模型排名平台Arena上,基准测试分数高达1357,略高于OpenAI o1的1352分,这标志着中国AI技术在国际舞台上的崛起。
  • 媒体关注:《纽约时报》《金融时报》等主流媒体对DeepSeek进行了报道,提升了其知名度。

DeepSeek在推理效率上的特别之处

多头潜在注意力(MLA)
  • 低秩联合压缩:DeepSeek通过一种特殊的压缩技术,减少了在推理过程中需要处理的数据量。这就像是把一个大包裹压缩成一个小包裹,运输起来更快更省力。
  • 动态调整路由偏置:DeepSeek能够根据任务的复杂程度,自动调整数据处理的路径,避免了不必要的计算,提高了效率。
多词元预测(MTP)
  • 多词元预测:传统的模型一次只能处理一个词,而DeepSeek一次可以处理多个词。这就像是同时处理多个任务,而不是一个接一个地处理,大大提高了处理速度。
FP8混合精度训练
  • 低精度计算:DeepSeek使用了一种特殊的计算方式,减少了计算过程中需要的内存和带宽。这就像是用更小的管道运输相同的水量,节省了资源,提高了效率。
知识蒸馏
  • 模型蒸馏:DeepSeek将大模型的推理能力迁移到小模型中,使得小模型在资源有限的场景中也能保持较高的推理精度。这就像是把一个大机器的功能浓缩到一个小机器里,小机器也能高效工作。
高推理速度
  • 生成速度提升:DeepSeek-V3的生成速度从上一代的20TPS提升到60TPS,提升了3倍。这就像是从慢跑提升到冲刺,处理任务的速度明显加快。

DeepSeek在哪些场景下表现最好?

科研与技术开发
  • 数学推理:DeepSeek在数学推理任务中表现优异,尤其是在处理复杂数学问题(如MATH-500)时,表现甚至超过了一些领先的闭源模型。
  • 代码生成与优化:DeepSeek在代码生成和优化方面表现出色,支持多种编程语言,能够自动生成高效代码,并快速检测潜在的Bug和优化点。
  • 自然语言推理:DeepSeek在自然语言理解、自动推理和语义分析等任务中表现突出,为自然语言处理领域提供了强大的技术支持。
企业智能化升级
  • 智能客服:企业可以通过DeepSeek的API服务,将模型集成到智能客服系统中,实现自动化的客户问题解答和问题处理。
  • 自动化决策:DeepSeek能够处理复杂的逻辑推理任务,适用于企业的数据分析和智能决策支持系统,为企业的市场预测和策略制定提供有力支持。
教育与培训
  • 教育工具:DeepSeek可作为教育工具,帮助学生掌握复杂的推理方法,促进学习者在数学和编程等学科的深度理解。
  • 思维过程展示:DeepSeek的长推理链和详细的思维过程展示,能为教育场景提供更直观的教学支持。
数据分析与智能决策
  • 数据分析:DeepSeek在处理复杂逻辑推理任务方面表现出色,适用于数据分析和智能决策支持系统。
  • 市场预测:DeepSeek的推理能力可以为企业的数据分析、市场预测和策略制定提供有力支持。

DeepSeek-V3项目地址及相关信息

DeepSeek-V3的GitHub项目地址是:GitHub - deepseek-ai/DeepSeek-V3。

项目特点
  • 高效的MoE架构:使用多头潜在注意力(MLA)和DeepSeekMoE架构,实现高效推理和经济高效的训练。
  • 创新的负载均衡策略:采用无辅助损失的负载均衡策略,最大限度地减少了由于鼓励负载均衡而导致的性能下降。
  • 多标记预测(MTP)目标:采用多标记预测目标,提高模型性能,并可用于推测解码以加速推理。
  • FP8混合精度训练:首次验证了FP8训练在大规模模型上的可行性和有效性,显著提高训练效率并降低训练成本。
  • 推理优化:支持FP8和BF16推理,并与多个开源推理框架集成,例如DeepSeek-Infer Demo、SGLang、LMDeploy和TensorRT-LLM等,支持在NVIDIA和AMD GPU以及华为Ascend NPU上运行。
  • 知识蒸馏:从DeepSeek-R1系列模型中蒸馏推理能力,提升DeepSeek-V3的推理性能,同时控制输出风格和长度。
  • 优秀的性能:在各种基准测试中超越其他开源模型,并实现了与领先的闭源模型相当的性能。
性能和效率提升
  • 参数规模:DeepSeek V3采用了高达6710亿参数的MoE架构,这种大规模参数化使得模型能够捕捉更复杂的模式和关系。
  • 计算资源管理:通过MoE架构,DeepSeek V3能够动态选择最合适的专家进行计算,从而减少不必要的计算和内存消耗。
  • 数据并行和模型并行:DeepSeek V3在训练过程中使用了数据并行、张量并行、序列并行和1F1B流水线并行等并行策略,这些策略提高了硬件利用率,加快了模型的训练速度。
  • 优化的学习率调度器:DeepSeek V3使用了多阶段学习率调度器,这有助于模型在不同的训练阶段保持最佳的学习速率。
  • Scaling Laws研究:DeepSeek V3的开发团队对Scaling Laws进行了深入研究,以找到最优的模型/数据规模分配比例,并对大规模模型训练结果进行预测。
  • 安全评估:DeepSeek V3在全训练过程中都进行严格的数据安全性筛选,确保训练得到的模型是符合人类价值观的。
评测成绩

在LiveBench测试中:

  • 全球平均分:60.4分
  • 推理能力:50分
  • 编程技能:63.4分
  • 数学解析:60分
  • 数据分析:57.7分
  • 语言理解:50.2分
  • 即时反馈(IF):80.9分。
使用方法
  • 在DeepSeek的官方网站上与DeepSeek-V3聊天:https://chat.deepseek.com。
  • 在DeepSeek平台上提供与OpenAI兼容的API:https://platform.deepseek.com。

使用GitHub方式安装和使用DeepSeek-V3(本地部署)

官方详细教程:DeepSeek V3 本地部署指南:从入门到精通

克隆仓库并安装依赖

首先,克隆DeepSeek-V3的GitHub仓库,并安装所需的依赖:

git clone https://github.com/deepseek-ai/DeepSeek-V3.git
cd DeepSeek-V3/inference
pip install -r requirements.txt
下载模型权重

从HuggingFace下载模型权重,并将其放入指定的文件夹。DeepSeek-V3提供了两种模型版本:

  • 基础模型:适用于通用任务。
  • 对话模型:针对对话和交互优化。

使用以下命令下载模型权重:

# For Base Model
git lfs install
git clone https://huggingface.co/deepseek-ai/DeepSeek-V3-Base# For Chat Model
git lfs install
git clone https://huggingface.co/deepseek-ai/DeepSeek-V3
模型权重转换

如果需要将FP8权重转换为BF16权重,可以使用以下命令:

python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16
运行推理

使用DeepSeek-Infer Demo进行推理。以下是一个简单的交互式推理示例:

启动推理服务

torchrun --nnodes 2 --nproc-per-node 8 generate.py --node-rank $RANK --master-addr $ADDR --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200

交互式使用:按照提示输入问题,模型会生成回答。

相关文章:

简单聊聊“DeepSeek”

目录 DeepSeek一夜火爆并受到广泛关注的优势 技术实力与创新 低成本与高效率 开源与免费 市场策略与应用领域 团队与资金优势 行业认可与媒体关注 DeepSeek在推理效率上的特别之处 多头潜在注意力(MLA) 多词元预测(MTP)…...

使用 Docker + Nginx + Certbot 实现自动化管理 SSL 证书

使用 Docker Nginx Certbot 实现自动化管理 SSL 证书 在互联网安全环境日益重要的今天,为站点或应用部署 HTTPS 已经成为一种常态。然而,手动申请并续期证书既繁琐又容易出错。本文将以 Nginx Certbot 为示例,基于 Docker 容器来搭建一个…...

粒子群算法 笔记 数学建模

引入: 如何找到全局最大值:如果只是贪心的话,容易被局部最大解锁定 方法有:盲目搜索,启发式搜索 盲目搜索:枚举法和蒙特卡洛模拟,但是样例太多花费巨量时间 所以启发式算法就来了,通过经验和规…...

【C语言】结构体与共用体深入解析

在C语言中,结构体(struct)和共用体(union)都是用来存储不同类型数据的复合数据类型,它们在程序设计中具有重要的作用。 推荐阅读:操作符详细解说,让你的编程技能更上一层楼 1. 结构体…...

es6.7.1分词器ik插件安装-和head插件连接es特殊配置

es6.7.1分词器ik插件安装-和head插件连接es特殊配置 如果对运维课程感兴趣,可以在b站上、A站或csdn上搜索我的账号: 运维实战课程,可以关注我,学习更多免费的运维实战技术视频 1.查看es6.7.1和es-head安装位置和es插件路径 [ro…...

java求职学习day18

常用的设计原则和设计模式 1 常用的设计原则(记住) 1.1 软件开发的流程 需求分析文档、概要设计文档、详细设计文档、编码和测试、安装和调试、维护和升级 1.2 常用的设计原则 (1)开闭原则(Open Close Principle…...

单链表专题(上)

链表的定义与创建 线性表: 1. 物理结构上不一定是线性的 2. 逻辑结构上一定是线性的 链表是一种物理存储结构上非连续,非顺序的存储结构 链表也是线性表的一种,但是在物理结构上不是连续的 链表是由一个一个的节点组成,需要数…...

【stm32学习】STM32F103相关特性

| 名称 | 缩写 | 频率 | 外部连接 | 功能 | 用途 | 特性 | |--------------------|------|----------------|---------------|------------|--------------|----------------| | 外部高速晶体振荡器 | HSE | 4~16MHz …...

PostGIS笔记:PostgreSQL中表、键和索引的基础操作

创建、查看与删除表 在数据库中创建一个表,使用如下代码: create table streets (id serial not null primary key, name varchar(50));这里的表名是streets,id是主键所以非空,采用serial数据类型,这个数据类型会自动…...

蓝桥杯python语言基础(3)——循环结构

一、for语句 理解range函数 range(start, stop, step) start: 序列开始的数字(默认为0)。stop: 序列结束的数字(不包含stop)。step: 步长(默认为1)。 练习 输出在 l 和 r 之间的所有偶数: pri…...

微服务网关鉴权之sa-token

目录 前言 项目描述 使用技术 项目结构 要点 实现 前期准备 依赖准备 统一依赖版本 模块依赖 配置文件准备 登录准备 网关配置token解析拦截器 网关集成sa-token 配置sa-token接口鉴权 配置satoken权限、角色获取 通用模块配置用户拦截器 api模块配置feign…...

23【进制的理解】

很多人可能听过计算机的最底层是2进制执行,但是原理并不知道,我们今天先不讨论那么复杂的问题,先讨论什么是进制 1910,10并不是1个字符,而是2个字符,也就是说在10进制里面没有“10”这个字符,1…...

jemalloc 5.3.0的tsd模块的源码分析

一、背景 在主流的内存库里,jemalloc作为android 5.0-android 10.0的默认分配器肯定占用了非常重要的一席之地。jemalloc的低版本和高版本之间的差异特别大,低版本的诸多网上整理的总结,无论是在概念上和还是在结构体命名上在新版本中很多都…...

【Convex Optimization Stanford】Lec3 Function

【Convex Optimization Stanford】Lec3 Function 前言凸函数的定义对凸函数在一条线上的限制增值扩充? 一阶条件二阶条件一些一阶/二阶条件的例子象集和sublevel set关于函数凸性的扩展(Jesen Inequality)保持函数凸性的操作非负加权和 & 仿射函数的…...

深入 Rollup:从入门到精通(三)Rollup CLI命令行实战

准备阶段:初始化项目 初始化项目,这里使用的是pnpm,也可以使用yarn或者npm # npm npm init -y # yarn yarn init -y # pnpm pnpm init安装rollup # npm npm install rollup -D # yarn yarn add rollup -D # pnpm pnpm install rollup -D在…...

wangEditor富文本编辑器,Laravel上传图片配置和使用

文章目录 前言步骤1. 构造好前端模版2. 搭建后端存储3. 调试 前言 由于最近写项目需要使用富文本编辑器,使用的是VUE3.0版本所以很多不兼容,实际测试以后推荐使用wangEditor 步骤 构造好前端模版搭建后端存储调试 1. 构造好前端模版 安装模版 模版安…...

chrome源码剖析—进程通信

Chrome 浏览器采用多进程架构(multi-process architecture),这种架构使得每个浏览器标签、扩展、插件、GPU 渲染等都在独立的进程中运行。为了确保不同进程之间的高效通信,Chrome 使用 进程间通信(IPC, Inter-Process …...

JJJ:linux时间子系统相关术语

文章目录 墙上时间内核管理的各种时间无时钟滴答模式(tickless mode 或 no-tick mode)简要介绍具体实现动态时钟滴答 Dynamic Ticks完全无时钟滴答(Full Tickless) nohz sleep单触发模式 oneshot mode 墙上时间 真实世界的真实时…...

0 基础学运维:解锁 K8s 云计算运维工程师成长密码

前言:作为一个过来人,我曾站在技术的门槛之外,连电脑运行内存和内存空间都傻傻分不清,完完全全的零基础。但如今,我已成长为一名资深的k8s云计算运维工程师。回顾这段历程,我深知踏上这条技术之路的艰辛与不…...

大一计算机的自学总结:位运算的应用及位图

前言 不仅异或运算有很多骚操作,位运算本身也有很多骚操作。(尤其后几个题,太逆天了) 一、2 的幂 class Solution { public:bool isPowerOfTwo(int n) {return n>0&&n(n&-n);} }; 根据二进制表示数的原理&#…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...