Qt5离线安装包无法下载问题解决办法
想在电脑里装一个Qt,但是直接报错。果然还是有解决办法滴。
qt download from your ip is not allowed
Qt5安装包下载办法
方法一:简单直接,直接科学一下,不过违法行为咱不做,遵纪守法好公民(不过没办法阻止别人不做🙂↔️)。
方法二:使用【迅雷】就可以下载,只需要知道Qt离线安装包的url地址;
https://download.qt.io/archive/qt/5.14/5.14.2/qt-opensource-windows-x86-5.14.2.exe
https://download.qt.io/archive/qt/5.14/5.14.2/qt-opensource-mac-x64-5.14.2.dmg
https://download.qt.io/archive/qt/5.14/5.14.2/qt-opensource-linux-x64-5.14.2.run
https://download.qt.io/new_archive/qt/5.9/5.9.9/qt-opensource-windows-x86-5.9.9.exe
https://download.qt.io/new_archive/qt/5.9/5.9.9/qt-opensource-linux-x64-5.9.9.run
# 源码地址
https://download.qt.io/archive/qt/5.14/5.14.2/submodules/qtbase-everywhere-src-5.14.2.tar.xz
https://download.qt.io/archive/qt/5.14/5.14.2/single/qt-everywhere-src-5.14.2.tar.xz
贴上linux和mac对应的下载地址获取方式,文件的命名规则如下:
qt-opensource-平台(window\linux\mac)-x64/x86-全版本名称.扩展名(exe\run\dmg)
相关文章:
Qt5离线安装包无法下载问题解决办法
想在电脑里装一个Qt,但是直接报错。果然还是有解决办法滴。 qt download from your ip is not allowed Qt5安装包下载办法 方法一:简单直接,直接科学一下,不过违法行为咱不做,遵纪守法好公民(不过没办法阻…...
qt-C++笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphicsRectItem的区别
qt-C笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphicsRectItem的区别 code review! 参考笔记 1.qt-C笔记之重写QGraphicsItem的paint方法(自定义QGraphicsItem) 文章目录 qt-C笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphic…...
doris:导入时实现数据转换
Doris 在数据导入时提供了强大的数据转换能力,可以简化部分数据处理流程,减少对额外 ETL 工具的依赖。主要支持以下四种转换方式: 列映射:将源数据列映射到目标表的不同列。 列变换:使用函数和表达式对源数据进行实时…...
新版231普通阿里滑块 自动化和逆向实现 分析
声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 逆向过程 补环境逆向 部分补环境 …...
如何构建树状的思维棱镜认知框架
在思维与知识管理中,“树状思维棱镜”通常指一种层级式、可多维度展开和不断深入(下钻)的认知框架。它不仅仅是普通的树状结构(如传统思维导图),更强调“棱镜”所体现的多视角、多维度切换与综合分析的能力…...
openRv1126 AI算法部署实战之——ONNX模型部署实战
在RV1126开发板上部署ONNX算法,实时目标检测RTSP传输。视频演示地址 rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili 一、准备工作 1.从官网下载YOLOv5-v7.0工程(YOLOv5的第7个版本) 手动在线下载: Releases ultraly…...
Vue 组件开发:构建高效可复用的前端界面要素
1 引言 在现代 Web 开发中,构建高效且可复用的前端界面要素是提升开发效率和用户体验的关键。Vue.js 作为一种轻量级且功能强大的前端框架,提供了丰富的工具和机制,帮助开发者快速构建高质量的应用程序。通过合理设计和封装 Vue 组件,我们可以实现组件的高效复用,提高开发…...
Vue.js组件开发-实现全屏平滑移动、自适应图片全屏滑动切换
使用Vue实现全屏平滑移动、自适应图片全屏滑动切换的功能。使用Vue 3和Vue Router,并结合一些CSS样式来完成这个效果。 步骤 创建Vue项目:使用Vue CLI创建一个新的Vue项目。准备图片:将需要展示的图片放在项目的public目录下。创建组件&…...
水果实体店品牌数字化:RWA + 智能体落地方案
一、方案背景 随着数字化技术的迅猛发展,实体零售行业正面临前所未有的挑战与机遇。传统的零售模式难以满足消费者对个性化、便捷化、智能化的需求,尤其是在水果等生鲜商品领域,如何通过技术手段提升运营效率、增强顾客体验、拓宽盈利模式&a…...
DeepSeek模型:开启人工智能的新篇章
DeepSeek模型:开启人工智能的新篇章 在当今快速发展的技术浪潮中,人工智能(AI)已经成为了推动社会进步和创新的核心力量之一。而DeepSeek模型,作为AI领域的一颗璀璨明珠,正以其强大的功能和灵活的用法&…...
Kubernetes 环境中的自动化运维实战指南
Kubernetes 作为容器编排领域的领导者,已经成为云原生应用的核心基础设施。然而,随着集群规模的扩大和应用的复杂化,手动运维 Kubernetes 集群变得愈发困难。自动化运维成为提升效率、保障系统稳定性的关键。本文将详细介绍如何在 Kubernetes 环境中实施自动化运维,涵盖工具…...
深入解析 C++17 中的 std::not_fn
文章目录 1. std::not_fn 的定义与目的2. 基本用法2.1 基本示例2.2 使用 Lambda 表达式2.3 与其他函数适配器的比较3. 在标准库中的应用3.1 结合标准库算法使用3.1.1 std::find_if 中的应用3.1.2 std::remove_if 中的应用3.1.3 其他标准库算法中的应用4. 高级技巧与最佳实践4.1…...
unity实现回旋镖函数
最近学习unity2D,想实现一个回旋镖武器,发出后就可以在角色周围回旋。 一、目标 1.不是一次性的,扔出去、返回、没有了;而是扔出去,返回到角色后方相同距离,再次返回;再次返回,永远…...
想品客老师的第九天:原型和继承
原型与继承前置看这里 原型 原型都了解了,但是不是所有对象都有对象原型 let obj1 {}console.log(obj1)let obj2 Object.create(null, {name: {value: 荷叶饭}})console.log(obj2) obj2为什么没有对象原型?obj2是完全的数据字典对象,没有…...
力扣【416. 分割等和子集】详细Java题解(背包问题)
首先我们可以求出数组和,当我们找到一个子集中元素的和为数组和的一半时,该就说明可以分割等和子集。 对于该问题我们可以转换成背包问题,求 数组里的元素 装入 数组和的一半大小的背包 能取得的最大值。 然后注意可以剪枝的地方。 代码&…...
2025年AI手机集中上市,三星Galaxy S25系列上市
2025年被认为是AI手机集中爆发的一年,各大厂商都会推出搭载人工智能的智能手机。三星Galaxy S25系列全球上市了。 三星Galaxy S25系列包含S25、S25和S25 Ultra三款机型,起售价为800美元(约合人民币5800元)。全系搭载骁龙8 Elite芯…...
为AI聊天工具添加一个知识系统 之79 详细设计之20 正则表达式 之7
本文要点 Q750、今天我们继续聊 本中的正则表达式。 在本项目(为AI聊天工具添加一个知识系统)中,将“正则表达式” 本来是计算机科学计算机科学的一个概念, 推广(扩张)到认知科学的“认知范畴”概念&#…...
理解PLT表和GOT表
1 简介 现代操作系统都是通过库来进行代码复用,降低开发成本提升系统整体效率。而库主要分为两种,一种是静态库,比如windows的.lib文件,macos的.a,linux的.a,另一种是动态库,比如windows的dll文…...
6 年没回老家过年了
今天是 2025 年的第一天,我们一家三口去了地坛庙会玩了会儿。 不是说过年的北京是空城吗?我愣是没抢到大年初一的门票,只好在咸鱼上溢价 40 买了两张票。 坐了一个小时的地坛终于到了,谁知迎来的是人山人海,同时小白牙…...
【原创改进】SCI级改进算法,一种多策略改进Alpha进化算法(IAE)
目录 1.前言2.CEC2017指标3.效果展示4.探索开发比5.定性分析6.附件材料7.代码获取 1.前言 本期推出一期原创改进——一种多策略改进Alpha进化算法(IAE)~ 选择CEC2017测试集低维(30dim)和高维(100dim)进行测…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
