当前位置: 首页 > news >正文

python学opencv|读取图像(五十一)使用修改图像像素点上BGR值实现图像覆盖效果

【1】引言

前序学习了图像的得加方法,包括使用add()函数直接叠加BGR值、使用bitwise()函数对BGR值进行按位计算叠加和使用addWeighted()函数实现图像加权叠加至少三种方法。文章链接包括且不限于:

python学opencv|读取图像(四十二)使用cv2.add()函数实现多图像叠加-CSDN博客

python学opencv|读取图像(四十九)使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客 

python学opencv|读取图像(五十)使用addWeighted()函数实现图像加权叠加效果-CSDN博客 

这些方式都是实现图片的整体叠加,如果有时候想实现局部覆盖,就需要新的方法,这就是本文的学习目标。

【2】可行性分析

实现局部覆盖,本质上是改变了图像局部像素点上的BGR值,所以从更改BGR值的角度,这个目标可行。

首先,引入一张图像,然后从另一个图像里截取部分图像的BGR值形成第三个图,再把第三个图盖到第一个图像上就可以。

【3】代码测试

按照前述可行性分析思路,先引入相关模块和初始图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcx = cv.imread('srcx.png') #读取图像srcx.png
srcp = cv.imread('srcp.png') #读取图像srcp.png
rowsx,colsx,cansx=srcx.shape #读取图像属性
rowsp,colsp,cansp=srcp.shape #读取图像属性
print('srcx的图像属性为:',srcx.shape)
print('srcp的图像属性为:',srcp.shape)

代码引入了两个图像:srcx.png和srcp.png,并且对图像的基本属性进行了读取。

之后先截取第二张图像的部分像素区域:

#截取部分图像
srcp0=srcp[int(0.5*rowsp):int(0.8*rowsp),int(0.2*colsp):int(0.6*colsp),:]
rowsp0,colsp0,cansp0=srcp0.shape #读取图像属性
print('srcp0的图像属性为:',srcp0.shape)

之后用上一步截取的图像,直接覆盖到srcx.png上:

#srcx的部分像素点BGR值被srcp0覆盖
srcx[int(0.5*rowsx):int(0.5*rowsx)+rowsp0,int(0.26*colsx):int(0.26*colsx)+colsp0,:]=srcp0

这里使用的是等大的像素区域,使用截取BGR值覆盖原有BGR值。

然后直接输出图像:

#显示和保存图像
cv.imshow('srcx',srcx) #显示图像
cv.imwrite('srcx0.png',srcx) #保存图像
cv.imshow('srcp',srcp) #显示图像
cv.imshow('srcp0',srcp0) #显示图像
cv.imwrite('srcp0.png',srcp0) #保存图像cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行使用的图像有:

图1 第一张图像srcx.png

图2 第二张图像srcp.png 

截取后的部分图像为:

图3 截取图像srcp.png  

使用BGR覆盖后获得的叠加图像效果为:

图4 截取图像BGR覆盖叠加图像srcx0.png  

由图4可见,截取图像BGR覆盖叠加第一张图像后获得的srcx0.png 相对于初始图像srcx.png,完全覆盖了部分区域。

此时获得的图像基本属性读取数据为:

图5 读取图像属性值 

图5展示的图像基本属性值,给出了第一张初始图像srcx.png和第二张初始图像srcp.png的像素值,之外还给出了截取图像srcp0.png的像素值。

【4】细节说明

进行BGR值覆盖时,应注意像区域的划分:

图6 像素区域划分

如图6所示,像素区域划分过程中:

a.应保证像素其实点保持一致,如行的起始都是0.5*rows,列的起始都是0.25*cols,因为只有这样才能保证BGR覆盖的区域和截取的图像等大;

b.应确保像素值都是整数,不确定的时候就用int()强行转化。

此时的完整代码为:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcx = cv.imread('srcx.png') #读取图像srcx.png
srcp = cv.imread('srcp.png') #读取图像srcp.png
rowsx,colsx,cansx=srcx.shape #读取图像属性
rowsp,colsp,cansp=srcp.shape #读取图像属性
print('srcx的图像属性为:',srcx.shape)
print('srcp的图像属性为:',srcp.shape)#截取部分图像
srcp0=srcp[int(0.5*rowsp):int(0.8*rowsp),int(0.2*colsp):int(0.6*colsp),:]
rowsp0,colsp0,cansp0=srcp0.shape #读取图像属性
print('srcp0的图像属性为:',srcp0.shape)#srcx的部分像素点BGR值被srcp0覆盖
srcx[int(0.5*rowsx):int(0.5*rowsx)+rowsp0,int(0.26*colsx):int(0.26*colsx)+colsp0,:]=srcp0#显示和保存图像
cv.imshow('srcx',srcx) #显示图像
cv.imwrite('srcx0.png',srcx) #保存图像
cv.imshow('srcp',srcp) #显示图像
cv.imshow('srcp0',srcp0) #显示图像
cv.imwrite('srcp0.png',srcp0) #保存图像cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

【5】总结

掌握了使用python+opencv使用BGR值覆盖的方式实现图像叠加效果的技巧。

相关文章:

python学opencv|读取图像(五十一)使用修改图像像素点上BGR值实现图像覆盖效果

【1】引言 前序学习了图像的得加方法,包括使用add()函数直接叠加BGR值、使用bitwise()函数对BGR值进行按位计算叠加和使用addWeighted()函数实现图像加权叠加至少三种方法。文章链接包括且不限于: python学opencv|读取图像(四十二&#xff…...

Flask数据的增删改查(CRUD)_flask删除数据自动更新

查询年龄小于17的学生信息 Student.query.filter(Student.s_age < 17) students Student.query.filter(Student.s_age.__lt__(17))模糊查询&#xff0c;使用like&#xff0c;查询姓名中第二位为花的学生信息 like ‘_花%’,_代表必须有一个数据&#xff0c;%任何数据 st…...

kamailio-ACC模块介绍【kamailio6.0. X】

Acc 模块 作者 Jiri Kuthan iptel.org jiriiptel.org Bogdan-Andrei Iancu Voice Sistem SRL bogdanvoice-system.ro Ramona-Elena Modroiu rosdev.ro ramonarosdev.ro 编辑 Bogdan-Andrei Iancu Voice Sistem SRL bogdanvoice-system.ro Sven Knoblich 1&1 Internet …...

数据库对象

数据库对象 数据库对象是构成数据库结构的基本单位&#xff0c;它们定义了数据库存储的数据类型、数据的组织方式以及数据之间的关系。在数据库中&#xff0c;对象可以包括表&#xff0c;视图&#xff0c;索引&#xff0c;触发器&#xff0c;存储过程&#xff0c;函数等多种类…...

EtherCAT主站IGH-- 27 -- IGH之globals.h文件解析

EtherCAT主站IGH-- 27 -- IGH之globals.h文件解析 0 预览一 该文件功能宏定义数据结构打印宏三 h文件翻译四 c文件翻译该文档修改记录:总结0 预览 一 该文件功能 该文件包含了一些全局定义和宏,用于 IgH EtherCAT 主站(EtherCAT Master)的实现。包括了一些超时设定、宏定义…...

2025多目标优化创新路径汇总

多目标优化是当下非常热门且有前景的方向&#xff01;作为AI领域的核心技术之一&#xff0c;其专注于解决多个相互冲突的目标的协同优化问题&#xff0c;核心理念是寻找一组“不完美但均衡”的“帕累托最优解”。在实际中&#xff0c;几乎处处都有它的身影。 但随着需求场景的…...

15JavaWeb——Maven高级篇

Maven高级 Web开发讲解完毕之后&#xff0c;我们再来学习Maven高级。其实在前面的课程当中&#xff0c;我们已经学习了Maven。 我们讲到 Maven 是一款构建和管理 Java 项目的工具。经过前面 10 多天 web 开发的学习&#xff0c;相信大家对于 Maven 这款工具的基本使用应该没什…...

使用Ollama本地化部署DeepSeek

1、Ollama 简介 Ollama 是一个开源的本地化大模型部署工具&#xff0c;旨在简化大型语言模型&#xff08;LLM&#xff09;的安装、运行和管理。它支持多种模型架构&#xff0c;并提供与 OpenAI 兼容的 API 接口&#xff0c;适合开发者和企业快速搭建私有化 AI 服务。 Ollama …...

蓝桥杯刷题DAY1:前缀和

所谓刷题&#xff0c;讲究的就是细心 帕鲁服务器崩坏【算法赛】 “那个帕鲁我已经观察你很久了&#xff0c;我对你是有些失望的&#xff0c;进了这个营地&#xff0c;不是把事情做好就可以的&#xff0c;你需要有体系化思考的能力。” 《幻兽帕鲁》火遍全网&#xff0c;成为…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

&#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f3af;项目基本介绍 &#x1f6a6;项…...

MINIRAG: TOWARDS EXTREMELY SIMPLE RETRIEVAL-AUGMENTED GENERATION论文翻译

感谢阅读 注意不含评估以后的翻译原论文地址标题以及摘要介绍部分MiniRAG 框架2.1 HETEROGENEOUS GRAPH INDEXING WITH SMALL LANGUAGE MODELS2.2 LIGHTWEIGHT GRAPH-BASED KNOWLEDGE RETRIEVAL2.2.1 QUERY SEMANTIC MAPPING2.2.2 TOPOLOGY-ENHANCED GRAPH RETRIEVAL 注意不含评…...

微服务入门(go)

微服务入门&#xff08;go&#xff09; 和单体服务对比&#xff1a;里面的服务仅仅用于某个特定的业务 一、领域驱动设计&#xff08;DDD&#xff09; 基本概念 领域和子域 领域&#xff1a;有范围的界限&#xff08;边界&#xff09; 子域&#xff1a;划分的小范围 核心域…...

Baklib揭示内容中台实施最佳实践的策略与实战经验

内容概要 在当前数字化转型的浪潮中&#xff0c;内容中台的概念日益受到关注。它不再仅仅是一个内容管理系统&#xff0c;而是企业提升运营效率与灵活应对市场变化的重要支撑平台。内容中台的实施离不开最佳实践的指导&#xff0c;这些实践为企业在建设高效内容中台时提供了宝…...

C++11新特性之lambda表达式

1.介绍 C11引入了lambda表达式。lambda表达式提供一种简洁的方式来定义匿名函数对象&#xff0c;使得在需要临时定义一个函数时非常方便。 2.lambda表达式用法 lambda表达式的基本用法为&#xff1a; [捕获列表]&#xff08;参数列表&#xff09;->返回类型 { 函数体 …...

洛谷 P10289 [GESP样题 八级] 小杨的旅游 C++ 完整题解

一、题目链接 P10289 [GESP样题 八级] 小杨的旅游 - 洛谷 二、题目大意 n个节点之间有n - 1条边&#xff0c;其中k个节点是传送门&#xff0c;任意两个传送门之间可以 以0单位地时间相互到达。问从u到v至少需要多少时间&#xff1f; 三、解题思路 输入不必多讲。 cin >> …...

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践

Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI&#xff0c;是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手&#xff0c;感觉收获还蛮多的&#xff0c;今天来分享下开发过程中的一些经验~ 为啥要做这个…...

JWT入门

一、初识JWT&#xff1a;新时代的身份认证方案 在分布式系统成为主流的今天&#xff0c;传统的Session认证方式逐渐显露出局限性。JWT&#xff08;JSON Web Token&#xff09;作为现代Web开发的认证新标准&#xff0c;凭借其无状态、跨域友好和安全性等特性&#xff0c;正在成为…...

Python - Quantstats量化投资策略绩效统计包 - 详解

使用Quantstats包做量化投资绩效统计的时候因为Pandas、Quantstats版本不匹配踩了一些坑&#xff1b;另外&#xff0c;Quantstats中的绩效统计指标非常全面&#xff0c;因此详细记录一下BUG修复方法、使用说明以及部分指标的内涵示意。 一、Quantstats安装及版本匹配问题 可以…...

智慧园区管理系统推动企业智能运维与资源优化的全新路径分析

内容概要 在当今快速发展的商业环境中&#xff0c;园区管理的数字化转型显得尤为重要。在这个背景下&#xff0c;快鲸智慧园区管理系统应运而生&#xff0c;成为企业实现高效管理的最佳选择。它通过整合互联网、物联网等先进技术&#xff0c;以智能化的方式解决了传统管理模式…...

【数据结构-字典树】力扣14. 最长公共前缀

编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 示例 1&#xff1a; 输入&#xff1a;strs [“flower”,“flow”,“flight”] 输出&#xff1a;“fl” 示例 2&#xff1a; 输入&#xff1a;strs [“dog”,“racecar…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...