当前位置: 首页 > news >正文

Flask数据的增删改查(CRUD)_flask删除数据自动更新

查询年龄小于17的学生信息

Student.query.filter(Student.s_age < 17)
students = Student.query.filter(Student.s_age.__lt__(17))

模糊查询,使用like,查询姓名中第二位为花的学生信息

like ‘_花%’,_代表必须有一个数据,%任何数据

students = Student.query.filter(Student.s_name.like('_花%'))

筛选:

offset()
# 跳过3个数据
stus = Student.query.offset(3)

limit()
# 跳过3个数据,查询5个信息
stus = Student.query.offset(3).limit(5)

order_by()
# 按照id降序,升序
students = Student.query.order_by(‘id’)
students = Student.query.order_by(‘-id’)

students = Student.query.order_by(desc('id'))
students = Student.query.order_by(asc('id'))students = Student.query.order_by('id desc')
students = Student.query.order_by('id asc')

get()
#使用get,获取id=1的学生对象,get()默认接收id
# 拿不到值不会报错,返回空
students = Student.query.get(4)

first()
# 获取年龄最大的一个
stus = Student.query.order_by(‘-s_age’).first()

逻辑运算

and_
filter(and_(条件),条件…)

或or_filter(or_(条件),条件…)非not_filter(not_(条件),条件…)

例子:
and_
students = Student.query.filter(Student.s_age==16,
Student.s_name.contains(‘花’))

students = Student.query.filter(and_(Student.s_age==16,Student.s_name.contains('花')))

not_
students = Student.query.filter(or_(Student.s_age16,
Student.s_name.contains(‘花’)))
or_
students = Student.query.filter(not_(Student.s_age
16),
Student.s_name.contains(‘花’))

注意:

  1. fliter和filter_by的结果可遍历
  2. 可以通过对其结果使用all()方法将其转换成一个列表或者first()转换成objects对象。
  3. all()获得的是列表,列表没有first()方法
  4. fliter和filter_by有flrst()方法,没有last方法

数据的添加在flask中修改数据后需要添加事务和提交事务

事务: 完整,一致,持久,原子
第一种:保存数据
将数据放入缓存
db.session.add(stu)
将缓存中的数据提交
db.session.commit()


在学生表中添加数据

@blue.route(‘/createstu/’)
def create_stu():
s = Student()
s.s_name = ‘小花’
s.s_age = 19

db.session.add(s)
db.session.commit()return '添加成功'

提交事务,使用commit提交我们的添加数据的操作


批量创建数据

批量添加数据时可以使用add()、add_list()添加事务
add():
db.session.add_all(stu)
db.session.commit()
stu是一个对象

add_list():
db.session.add_all(stus_list)
db.session.commit()
stus_list是一个列表,其每个元素都是一个对象


第一种

@app_blue.route(‘create_many_stu/’,methods=[‘GET’])
def create_many_stu():
if request.method == ‘GET’:
stu = Student()
stus_list = []
for i in range(5):
stu = Student()
stu.s_name = ‘小花%s’ % random.randrange(10, 1000)
stu.s_age = random.randint(10,20)
stus_list.append(stu)

db.session.add_all(stus_list)
db.session.commit()# db.session.add(stu)
# db.session.commit
return '批量创建'

db.session.add_all(stus_list)
db.session.commit()
将列表中的数据统一添加到缓存区中,并提交


第二种

第二种:重写init

models中:

def init(self, name, age):
# 2,给对象赋值
self.s_name = name
self.s_age = age

views中:
@app_blue.route(‘create_many_stu_init/’,methods=[‘GET’])
def create_many_stu():
if request.method == ‘GET’:
stus_list = []
for i in range(5):
stu = Student(‘小花%s’ % random.randrange(10,1000), random.randint(10,20))
stus_list.append(stu)

    db.session.add_all(stus_list)db.session.commit()# db.session.add(stu)# db.session.commitreturn '批量创建成功'

修改数据

思路:获取到需要修改的对象,通过对象.属性的方式将属性重新赋值,然后使用commit提交事务


写法1

students = Student.query.filter_by(s_id=3).first()

students.s_name = ‘哈哈’

db.session.commit()


写法2

Student.query.filter_by(s_id=3).update({‘s_name’:‘娃哈哈’})

db.session.commit()


删除数据

格式:db.session.delete(对象)
db.session.commit()

注意:在修改数据(增删改)中如果使用commit()的话,只会修改本地缓存中的数据,数据库中的数据不会更新。
必须使用:db.session.commit()


写法1

students = Student.query.filter_by(s_id=2).first()
db.session.delete(students)
db.session.commit()


写法2

students = Student.query.filter_by(s_id=1).all()
db.session.delete(students[0])
db.session.commit()

模型

相关文章:

Flask数据的增删改查(CRUD)_flask删除数据自动更新

查询年龄小于17的学生信息 Student.query.filter(Student.s_age < 17) students Student.query.filter(Student.s_age.__lt__(17))模糊查询&#xff0c;使用like&#xff0c;查询姓名中第二位为花的学生信息 like ‘_花%’,_代表必须有一个数据&#xff0c;%任何数据 st…...

kamailio-ACC模块介绍【kamailio6.0. X】

Acc 模块 作者 Jiri Kuthan iptel.org jiriiptel.org Bogdan-Andrei Iancu Voice Sistem SRL bogdanvoice-system.ro Ramona-Elena Modroiu rosdev.ro ramonarosdev.ro 编辑 Bogdan-Andrei Iancu Voice Sistem SRL bogdanvoice-system.ro Sven Knoblich 1&1 Internet …...

数据库对象

数据库对象 数据库对象是构成数据库结构的基本单位&#xff0c;它们定义了数据库存储的数据类型、数据的组织方式以及数据之间的关系。在数据库中&#xff0c;对象可以包括表&#xff0c;视图&#xff0c;索引&#xff0c;触发器&#xff0c;存储过程&#xff0c;函数等多种类…...

EtherCAT主站IGH-- 27 -- IGH之globals.h文件解析

EtherCAT主站IGH-- 27 -- IGH之globals.h文件解析 0 预览一 该文件功能宏定义数据结构打印宏三 h文件翻译四 c文件翻译该文档修改记录:总结0 预览 一 该文件功能 该文件包含了一些全局定义和宏,用于 IgH EtherCAT 主站(EtherCAT Master)的实现。包括了一些超时设定、宏定义…...

2025多目标优化创新路径汇总

多目标优化是当下非常热门且有前景的方向&#xff01;作为AI领域的核心技术之一&#xff0c;其专注于解决多个相互冲突的目标的协同优化问题&#xff0c;核心理念是寻找一组“不完美但均衡”的“帕累托最优解”。在实际中&#xff0c;几乎处处都有它的身影。 但随着需求场景的…...

15JavaWeb——Maven高级篇

Maven高级 Web开发讲解完毕之后&#xff0c;我们再来学习Maven高级。其实在前面的课程当中&#xff0c;我们已经学习了Maven。 我们讲到 Maven 是一款构建和管理 Java 项目的工具。经过前面 10 多天 web 开发的学习&#xff0c;相信大家对于 Maven 这款工具的基本使用应该没什…...

使用Ollama本地化部署DeepSeek

1、Ollama 简介 Ollama 是一个开源的本地化大模型部署工具&#xff0c;旨在简化大型语言模型&#xff08;LLM&#xff09;的安装、运行和管理。它支持多种模型架构&#xff0c;并提供与 OpenAI 兼容的 API 接口&#xff0c;适合开发者和企业快速搭建私有化 AI 服务。 Ollama …...

蓝桥杯刷题DAY1:前缀和

所谓刷题&#xff0c;讲究的就是细心 帕鲁服务器崩坏【算法赛】 “那个帕鲁我已经观察你很久了&#xff0c;我对你是有些失望的&#xff0c;进了这个营地&#xff0c;不是把事情做好就可以的&#xff0c;你需要有体系化思考的能力。” 《幻兽帕鲁》火遍全网&#xff0c;成为…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

&#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f3af;项目基本介绍 &#x1f6a6;项…...

MINIRAG: TOWARDS EXTREMELY SIMPLE RETRIEVAL-AUGMENTED GENERATION论文翻译

感谢阅读 注意不含评估以后的翻译原论文地址标题以及摘要介绍部分MiniRAG 框架2.1 HETEROGENEOUS GRAPH INDEXING WITH SMALL LANGUAGE MODELS2.2 LIGHTWEIGHT GRAPH-BASED KNOWLEDGE RETRIEVAL2.2.1 QUERY SEMANTIC MAPPING2.2.2 TOPOLOGY-ENHANCED GRAPH RETRIEVAL 注意不含评…...

微服务入门(go)

微服务入门&#xff08;go&#xff09; 和单体服务对比&#xff1a;里面的服务仅仅用于某个特定的业务 一、领域驱动设计&#xff08;DDD&#xff09; 基本概念 领域和子域 领域&#xff1a;有范围的界限&#xff08;边界&#xff09; 子域&#xff1a;划分的小范围 核心域…...

Baklib揭示内容中台实施最佳实践的策略与实战经验

内容概要 在当前数字化转型的浪潮中&#xff0c;内容中台的概念日益受到关注。它不再仅仅是一个内容管理系统&#xff0c;而是企业提升运营效率与灵活应对市场变化的重要支撑平台。内容中台的实施离不开最佳实践的指导&#xff0c;这些实践为企业在建设高效内容中台时提供了宝…...

C++11新特性之lambda表达式

1.介绍 C11引入了lambda表达式。lambda表达式提供一种简洁的方式来定义匿名函数对象&#xff0c;使得在需要临时定义一个函数时非常方便。 2.lambda表达式用法 lambda表达式的基本用法为&#xff1a; [捕获列表]&#xff08;参数列表&#xff09;->返回类型 { 函数体 …...

洛谷 P10289 [GESP样题 八级] 小杨的旅游 C++ 完整题解

一、题目链接 P10289 [GESP样题 八级] 小杨的旅游 - 洛谷 二、题目大意 n个节点之间有n - 1条边&#xff0c;其中k个节点是传送门&#xff0c;任意两个传送门之间可以 以0单位地时间相互到达。问从u到v至少需要多少时间&#xff1f; 三、解题思路 输入不必多讲。 cin >> …...

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践

Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI&#xff0c;是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手&#xff0c;感觉收获还蛮多的&#xff0c;今天来分享下开发过程中的一些经验~ 为啥要做这个…...

JWT入门

一、初识JWT&#xff1a;新时代的身份认证方案 在分布式系统成为主流的今天&#xff0c;传统的Session认证方式逐渐显露出局限性。JWT&#xff08;JSON Web Token&#xff09;作为现代Web开发的认证新标准&#xff0c;凭借其无状态、跨域友好和安全性等特性&#xff0c;正在成为…...

Python - Quantstats量化投资策略绩效统计包 - 详解

使用Quantstats包做量化投资绩效统计的时候因为Pandas、Quantstats版本不匹配踩了一些坑&#xff1b;另外&#xff0c;Quantstats中的绩效统计指标非常全面&#xff0c;因此详细记录一下BUG修复方法、使用说明以及部分指标的内涵示意。 一、Quantstats安装及版本匹配问题 可以…...

智慧园区管理系统推动企业智能运维与资源优化的全新路径分析

内容概要 在当今快速发展的商业环境中&#xff0c;园区管理的数字化转型显得尤为重要。在这个背景下&#xff0c;快鲸智慧园区管理系统应运而生&#xff0c;成为企业实现高效管理的最佳选择。它通过整合互联网、物联网等先进技术&#xff0c;以智能化的方式解决了传统管理模式…...

【数据结构-字典树】力扣14. 最长公共前缀

编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 示例 1&#xff1a; 输入&#xff1a;strs [“flower”,“flow”,“flight”] 输出&#xff1a;“fl” 示例 2&#xff1a; 输入&#xff1a;strs [“dog”,“racecar…...

《深入浅出HTTPS​​​​​​​​​​​​​​​​​》读书笔记(31):HTTPS和TLS/SSL

《深入浅出HTTPS​​​​​​​​​​》读书笔记&#xff08;31&#xff09;&#xff1a;HTTPS和TLS/SSL TLS/SSL协议和应用层协议无关&#xff0c;它只是加密应用层协议&#xff08;比如HTTP&#xff09;并传递给下层的TCP。 HTTP和TLS/SSL协议组合在一起就是HTTPS, HTTPS等…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...