Flask数据的增删改查(CRUD)_flask删除数据自动更新
查询年龄小于17的学生信息
Student.query.filter(Student.s_age < 17)
students = Student.query.filter(Student.s_age.__lt__(17))
模糊查询,使用like,查询姓名中第二位为花的学生信息
like ‘_花%’,_代表必须有一个数据,%任何数据
students = Student.query.filter(Student.s_name.like('_花%'))
筛选:
offset()
# 跳过3个数据
stus = Student.query.offset(3)
limit()
# 跳过3个数据,查询5个信息
stus = Student.query.offset(3).limit(5)
order_by()
# 按照id降序,升序
students = Student.query.order_by(‘id’)
students = Student.query.order_by(‘-id’)
students = Student.query.order_by(desc('id'))
students = Student.query.order_by(asc('id'))students = Student.query.order_by('id desc')
students = Student.query.order_by('id asc')
get()
#使用get,获取id=1的学生对象,get()默认接收id
# 拿不到值不会报错,返回空
students = Student.query.get(4)
first()
# 获取年龄最大的一个
stus = Student.query.order_by(‘-s_age’).first()
逻辑运算
与
and_
filter(and_(条件),条件…)
或or_filter(or_(条件),条件…)非not_filter(not_(条件),条件…)
例子:
and_
students = Student.query.filter(Student.s_age==16,
Student.s_name.contains(‘花’))
students = Student.query.filter(and_(Student.s_age==16,Student.s_name.contains('花')))
not_
students = Student.query.filter(or_(Student.s_age16,
Student.s_name.contains(‘花’)))
or_
students = Student.query.filter(not_(Student.s_age16),
Student.s_name.contains(‘花’))
注意:
- fliter和filter_by的结果可遍历
- 可以通过对其结果使用all()方法将其转换成一个列表或者first()转换成objects对象。
- all()获得的是列表,列表没有first()方法
- fliter和filter_by有flrst()方法,没有last方法
数据的添加在flask中修改数据后需要添加事务和提交事务
事务: 完整,一致,持久,原子
第一种:保存数据
将数据放入缓存
db.session.add(stu)
将缓存中的数据提交
db.session.commit()
在学生表中添加数据
@blue.route(‘/createstu/’)
def create_stu():
s = Student()
s.s_name = ‘小花’
s.s_age = 19
db.session.add(s)
db.session.commit()return '添加成功'
提交事务,使用commit提交我们的添加数据的操作
批量创建数据
批量添加数据时可以使用add()、add_list()添加事务
add():
db.session.add_all(stu)
db.session.commit()
stu是一个对象
add_list():
db.session.add_all(stus_list)
db.session.commit()
stus_list是一个列表,其每个元素都是一个对象
第一种
@app_blue.route(‘create_many_stu/’,methods=[‘GET’])
def create_many_stu():
if request.method == ‘GET’:
stu = Student()
stus_list = []
for i in range(5):
stu = Student()
stu.s_name = ‘小花%s’ % random.randrange(10, 1000)
stu.s_age = random.randint(10,20)
stus_list.append(stu)
db.session.add_all(stus_list)
db.session.commit()# db.session.add(stu)
# db.session.commit
return '批量创建'
db.session.add_all(stus_list)
db.session.commit()
将列表中的数据统一添加到缓存区中,并提交
第二种
第二种:重写init
models中:
def init(self, name, age):
# 2,给对象赋值
self.s_name = name
self.s_age = age
views中:
@app_blue.route(‘create_many_stu_init/’,methods=[‘GET’])
def create_many_stu():
if request.method == ‘GET’:
stus_list = []
for i in range(5):
stu = Student(‘小花%s’ % random.randrange(10,1000), random.randint(10,20))
stus_list.append(stu)
db.session.add_all(stus_list)db.session.commit()# db.session.add(stu)# db.session.commitreturn '批量创建成功'
修改数据
思路:获取到需要修改的对象,通过对象.属性的方式将属性重新赋值,然后使用commit提交事务
写法1
students = Student.query.filter_by(s_id=3).first()
students.s_name = ‘哈哈’
db.session.commit()
写法2
Student.query.filter_by(s_id=3).update({‘s_name’:‘娃哈哈’})
db.session.commit()
删除数据
格式:db.session.delete(对象)
db.session.commit()
注意:在修改数据(增删改)中如果使用commit()的话,只会修改本地缓存中的数据,数据库中的数据不会更新。
必须使用:db.session.commit()
写法1
students = Student.query.filter_by(s_id=2).first()
db.session.delete(students)
db.session.commit()
写法2
students = Student.query.filter_by(s_id=1).all()
db.session.delete(students[0])
db.session.commit()
模型
相关文章:
Flask数据的增删改查(CRUD)_flask删除数据自动更新
查询年龄小于17的学生信息 Student.query.filter(Student.s_age < 17) students Student.query.filter(Student.s_age.__lt__(17))模糊查询,使用like,查询姓名中第二位为花的学生信息 like ‘_花%’,_代表必须有一个数据,%任何数据 st…...
kamailio-ACC模块介绍【kamailio6.0. X】
Acc 模块 作者 Jiri Kuthan iptel.org jiriiptel.org Bogdan-Andrei Iancu Voice Sistem SRL bogdanvoice-system.ro Ramona-Elena Modroiu rosdev.ro ramonarosdev.ro 编辑 Bogdan-Andrei Iancu Voice Sistem SRL bogdanvoice-system.ro Sven Knoblich 1&1 Internet …...
数据库对象
数据库对象 数据库对象是构成数据库结构的基本单位,它们定义了数据库存储的数据类型、数据的组织方式以及数据之间的关系。在数据库中,对象可以包括表,视图,索引,触发器,存储过程,函数等多种类…...
EtherCAT主站IGH-- 27 -- IGH之globals.h文件解析
EtherCAT主站IGH-- 27 -- IGH之globals.h文件解析 0 预览一 该文件功能宏定义数据结构打印宏三 h文件翻译四 c文件翻译该文档修改记录:总结0 预览 一 该文件功能 该文件包含了一些全局定义和宏,用于 IgH EtherCAT 主站(EtherCAT Master)的实现。包括了一些超时设定、宏定义…...

2025多目标优化创新路径汇总
多目标优化是当下非常热门且有前景的方向!作为AI领域的核心技术之一,其专注于解决多个相互冲突的目标的协同优化问题,核心理念是寻找一组“不完美但均衡”的“帕累托最优解”。在实际中,几乎处处都有它的身影。 但随着需求场景的…...

15JavaWeb——Maven高级篇
Maven高级 Web开发讲解完毕之后,我们再来学习Maven高级。其实在前面的课程当中,我们已经学习了Maven。 我们讲到 Maven 是一款构建和管理 Java 项目的工具。经过前面 10 多天 web 开发的学习,相信大家对于 Maven 这款工具的基本使用应该没什…...

使用Ollama本地化部署DeepSeek
1、Ollama 简介 Ollama 是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与 OpenAI 兼容的 API 接口,适合开发者和企业快速搭建私有化 AI 服务。 Ollama …...

蓝桥杯刷题DAY1:前缀和
所谓刷题,讲究的就是细心 帕鲁服务器崩坏【算法赛】 “那个帕鲁我已经观察你很久了,我对你是有些失望的,进了这个营地,不是把事情做好就可以的,你需要有体系化思考的能力。” 《幻兽帕鲁》火遍全网,成为…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册
🧸安清h:个人主页 🎥个人专栏:【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎯项目基本介绍 🚦项…...

MINIRAG: TOWARDS EXTREMELY SIMPLE RETRIEVAL-AUGMENTED GENERATION论文翻译
感谢阅读 注意不含评估以后的翻译原论文地址标题以及摘要介绍部分MiniRAG 框架2.1 HETEROGENEOUS GRAPH INDEXING WITH SMALL LANGUAGE MODELS2.2 LIGHTWEIGHT GRAPH-BASED KNOWLEDGE RETRIEVAL2.2.1 QUERY SEMANTIC MAPPING2.2.2 TOPOLOGY-ENHANCED GRAPH RETRIEVAL 注意不含评…...

微服务入门(go)
微服务入门(go) 和单体服务对比:里面的服务仅仅用于某个特定的业务 一、领域驱动设计(DDD) 基本概念 领域和子域 领域:有范围的界限(边界) 子域:划分的小范围 核心域…...

Baklib揭示内容中台实施最佳实践的策略与实战经验
内容概要 在当前数字化转型的浪潮中,内容中台的概念日益受到关注。它不再仅仅是一个内容管理系统,而是企业提升运营效率与灵活应对市场变化的重要支撑平台。内容中台的实施离不开最佳实践的指导,这些实践为企业在建设高效内容中台时提供了宝…...
C++11新特性之lambda表达式
1.介绍 C11引入了lambda表达式。lambda表达式提供一种简洁的方式来定义匿名函数对象,使得在需要临时定义一个函数时非常方便。 2.lambda表达式用法 lambda表达式的基本用法为: [捕获列表](参数列表)->返回类型 { 函数体 …...

洛谷 P10289 [GESP样题 八级] 小杨的旅游 C++ 完整题解
一、题目链接 P10289 [GESP样题 八级] 小杨的旅游 - 洛谷 二、题目大意 n个节点之间有n - 1条边,其中k个节点是传送门,任意两个传送门之间可以 以0单位地时间相互到达。问从u到v至少需要多少时间? 三、解题思路 输入不必多讲。 cin >> …...

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践
Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI,是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手,感觉收获还蛮多的,今天来分享下开发过程中的一些经验~ 为啥要做这个…...
JWT入门
一、初识JWT:新时代的身份认证方案 在分布式系统成为主流的今天,传统的Session认证方式逐渐显露出局限性。JWT(JSON Web Token)作为现代Web开发的认证新标准,凭借其无状态、跨域友好和安全性等特性,正在成为…...

Python - Quantstats量化投资策略绩效统计包 - 详解
使用Quantstats包做量化投资绩效统计的时候因为Pandas、Quantstats版本不匹配踩了一些坑;另外,Quantstats中的绩效统计指标非常全面,因此详细记录一下BUG修复方法、使用说明以及部分指标的内涵示意。 一、Quantstats安装及版本匹配问题 可以…...

智慧园区管理系统推动企业智能运维与资源优化的全新路径分析
内容概要 在当今快速发展的商业环境中,园区管理的数字化转型显得尤为重要。在这个背景下,快鲸智慧园区管理系统应运而生,成为企业实现高效管理的最佳选择。它通过整合互联网、物联网等先进技术,以智能化的方式解决了传统管理模式…...
【数据结构-字典树】力扣14. 最长公共前缀
编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 示例 1: 输入:strs [“flower”,“flow”,“flight”] 输出:“fl” 示例 2: 输入:strs [“dog”,“racecar…...
《深入浅出HTTPS》读书笔记(31):HTTPS和TLS/SSL
《深入浅出HTTPS》读书笔记(31):HTTPS和TLS/SSL TLS/SSL协议和应用层协议无关,它只是加密应用层协议(比如HTTP)并传递给下层的TCP。 HTTP和TLS/SSL协议组合在一起就是HTTPS, HTTPS等…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...