当前位置: 首页 > news >正文

Linux网络 HTTPS 协议原理

概念

HTTPS 也是一个应用层协议,不过 是在 HTTP 协议的基础上引入了一个加密层。因为 HTTP的内容是明文传输的,明文数据会经过路由器、wifi 热点、通信服务运营商、代理服务器等多个物理节点,如果信息在传输过程中被劫持,传输的内容就完全暴露了。劫持者还可以篡改传输的信息且不被双方察觉,这就是 中间人攻击 ,所以我们才需要对信息进行加密。HTTPS 就是在 HTTP 的基础上进行了加密 , 进一步的来保证用户的信息安全。
  • 加密就是把 明文 (要传输的信息)进行一系列变换, 生成 密文
  • 解密就是把 密文 再进行一系列变换, 还原成 明文
在这个加密和解密的过程中 , 往往需要一个或者多个中间的数据 , 辅助进行这个过程 , 这样的数据称为 密钥。

常见的加密方式

  • 对称加密:对称加密是指加密和解密使用相同的密钥。在HTTPS中,对称加密用于加密实际传输的数据,因为它具有较高的加密和解密速度。常见的对称加密算法有AES、RC4和3DES等。
  • 非对称加密:非对称加密使用一对密钥,即公钥和私钥。公钥可以公开,用于加密数据,而私钥必须保密,用于解密数据。在HTTPS中,非对称加密用于在客户端和服务器之间交换对称加密密钥,以确保密钥的安全传输。常见的非对称加密算法有RSA、DSA/DSS等。算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。其中有两种用法,一是通过公钥对明文加密, 变成密文,通过私钥对密文解密, 变成明文;二是通过私钥对明文加密, 变成密文,通过公钥对密文解密, 变成明文。
  • 数字证书:数字证书是由权威的证书颁发机构(CA)颁发的,用于证明服务器的身份。证书中包含服务器的公钥、域名、证书颁发机构的信息等。客户端通过验证证书的有效性来确保与合法的服务器进行通信。

数据摘要(数据指纹)

数字摘要(数据指纹),其基本原理是利用单向散列函数(Hash 函数 ) 对信息进行运算, 生成一串固定⻓度的数字摘要。数字指纹并不是一种加密机制, 但可以用来判断数据有没有被篡改。摘要常见算法:有 MD5、SHA1、SHA256、SHA512 等,算法把无限的映射成有限,因此可能会有碰撞(两个不同的信息,算出的摘要相同,但是概率非常低),摘要特征:和加密算法的区别是,摘要严格意义不是加密,因为没有解密,只不过从摘要很难反推原信息,通常用来进行数据对比。

HTTPS 的工作过程探究

既然要保证数据安全 , 就需要进行 " 加密 ",网络传输中不再直接传输明文了, 而是加密之后的 " 密文 "。加密的方式有很多, 但是整体可以分成两大类 : 对称加密 非对称加密。

方案 1 - 只使用对称加密

如果通信双方都各自持有同一个密钥 X ,且没有别人知道,这两方的通信安全当然是可以被保证的
引入对称加密之后, 即使数据被截获, 由于黑客不知道密钥是啥, 因此就无法进行解密, 也就不知道请求的真实内容是啥了。但事情没这么简单, 服务器同一时刻其实是给很多客户端提供服务的。 这么多客户端 , 每个人用的秘钥都必须是不同的( 如果是相同那密钥就太容易扩散了 , 黑客就也能拿到了 )。因此服务器就需要维护每个客户端和每个密钥之间的关联关系 , 这也是个很⿇烦的事情
比较理想的做法 , 就是能在客户端和服务器建⽴连接的时候 , 双方 协商 确定这次的密钥是啥。
但是如果直接把密钥明文传输 , 那么黑客也就能获得密钥了, 此时后续的加密操作就形同虚设了。 因此密钥的传输也必须加密传输 !但是要想对密钥进行对称加密, 就仍然需要先协商确定一个 " 密钥的密钥 "。 这就成了 " 先有鸡还是先有蛋" 的问题了, 此时密钥的传输再用对称加密就行不通了。

方案 2 - 只使用非对称加密

鉴于非对称加密的机制,如果服务器先把公钥以明文方式传输给浏览器,之后浏览器向服务器传数据前都先用这个公钥加密好再传,从客户端到服务器信道似乎是安全的 ( 有安全问题 ) ,因为只有服务器有相应的私钥能解开公钥加密的数据。但是服务器到浏览器的这条路怎么保障安全?
如果服务器用它的私钥加密数据传给浏览器,那么浏览器用公钥可以解密它,而这个公钥是一开始从服务器通过明文传输给浏览器的,若这个公钥被中间人劫持到了,那他也能用该公钥解密服务器传来的信息了。

方案 3 - 双方都使用非对称加密

  1. 服务端拥有公钥 S 与对应的私钥 S',客户端拥有公钥 C 与对应的私钥 C'
  2. 客户和服务端交换公钥
  3. 客户端给服务端发信息:先用 S 对数据加密,再发送,只能由服务器解密,因为只有服务器有私钥 S'
  4. 服务端给客户端发信息:先用 C 对数据加密,在发送,只能由客户端解密,因为只有客户端有私钥 C'
这样貌似也行啊,但是效率太低, 依旧有安全问题

方案 4 - 非对称加密 + 对称加密

先解决效率问题
  1. 服务端具有非对称公钥 S 和私钥 S'
  2. 客户端发起 https 请求,获取服务端公钥 S
  3. 客户端在本地生成对称密钥 C, 通过公钥 S 加密, 发送给服务器.
  4. 由于中间的网络设备没有私钥, 即使截获了数据, 也无法还原出内部的原文, 也就无法获取到对称密钥(真的吗?)
  5. 服务器通过私钥 S'解密, 还原出客户端发送的对称密钥 C. 并且使用这个对称密钥加密给客户端返回的响应数据.
  6. 后续客户端和服务器的通信都只用对称加密即可。由于该密钥只有客户端和服务器两个主机知道, 其他主机/设备不知道密钥即使截获数据也没有意义。
由于对称加密的效率比非对称加密⾼很多, 因此只是在开始阶段协商密钥的时候使用非对称加密, 后续的传输仍然使用对称加密。
虽然上面已经比较接近答案了,但是依旧有安全问题,方案 2 ,方案 3 ,方案 4 都存在一个问题,如果最开始,中间人就已经开始攻击了呢?

中间人攻击 - 针对上面的场景

确实,在方案 2/3/4 中,客户端获取到公钥 S 之后,对客户端形成的对称秘钥 X 用服务端给客户端的公钥 S 进行加密,中间人即使窃取到了数据,此时中间人确实无法解出客户端形成的密钥 X ,因为只有服务器有私钥 S',但是中间人的攻击,如果在最开始握手协商的时候就进行了,那就不一定了,假设 hacker 已经成功成为中间人。
  1. 服务器具有非对称加密算法的公钥 S,私钥 S'
  2. 中间人具有非对称加密算法的公钥 M,私钥 M'
  3. 客户端向服务器发起请求,服务器明文传送公钥 S 给客户端
  4. 中间人劫持数据报文,提取公钥 S 并保存好,然后将被劫持报文中的公钥 S 替换成为自己的公钥 M,并将伪造报文发给客户端
  5. 客户端收到报文,提取公钥 M(自己当然不知道公钥被更换过了),自己形成对称秘钥 X,用公钥 M 加密 X,形成报文发送给服务器
  6. 中间人劫持后,直接用自己的私钥 M'进行解密,得到通信秘钥 X,再用曾经保存的服务端公钥 S 加密后,将报文推送给服务器
  7. 服务器拿到报文,用自己的私钥 S'解密,得到通信秘钥 X
  8. 双方开始采用 X 进行对称加密,进行通信。但是一切都在中间人的掌握中,劫持数据,进行窃听甚至修改,都是可以的
上面的攻击方案,同样适用于方案 2 ,方案 3。问题本质出在哪里了呢?客户端无法确定 收到的含有公钥的数据报文,就是⽬标服务器发送过来的!

CA 认证

服务端在使用 HTTPS 前,需要向 CA 机构申领一份数字证书,数字证书里含有证书申请者信息、公钥信息等。服务器把证书传输给浏览器,浏览器从证书里获取公钥就行了,证书就如身份证,证明服务端公钥的权威性。
需要注意的是:申请证书的时候,需要在特定生成平台查,会同时生成一对⼉密钥对⼉,即公钥和私钥,这对密钥对⼉就是用来在网络通信中进行明文加密以及数字签名的。其中公钥会随着 CSR 文件,一起发给 CA 进行权威认证,私钥服务端自己保留,用来后续进行通信(其实主要就是用来交换对称秘钥)。
这个 证书 可以理解成是一个结构化的字符串 , 里面包含了以下信息 :
  • 证书发布机构
  • 证书有效期
  • 公钥
  • 证书所有者
  • 签名
需要注意的是:申请证书的时候,需要在特定平台生成查,会同时生成一对⼉密钥对⼉,即公钥和私钥。这对密钥对⼉就是用来在网络通信中进行明文加密以及数字签名的。其中公钥会随着 CSR 文件,一起发给 CA 进行权威认证,私钥服务端自己保留,用来后续进行通信(其实主要就是用来交换对称秘钥)。

理解数据签名

签名的形成是基于非对称加密算法的,注意,⽬前暂时和 https 没有关系,不要和 https 中的公钥私钥搞混了。
当服务端申请 CA 证书的时候, CA 机构会对该服务端进行审核,并专⻔为该网站形成数字签名,过程如下:
  1. CA 机构拥有非对称加密的私钥 A 和公钥 A'
  2. CA 机构对服务端申请的证书明文数据进行 hash,形成数据摘要
  3. 然后对数据摘要用 CA 私钥 A'加密,得到数字签名 S
服务端申请的证书明文和数字签名 S 共同组成了数字证书,这样一份数字证书就可以颁发给服务端了。

方案 5 - 非对称加密 + 对称加密 + 证书认证

在客户端和服务器刚一建⽴连接的时候, 服务器给客户端返回一个 证书, 证书包含了之前服务端的公钥, 也包含了网站的身份信息。
当客户端获取到这个证书之后, 会对证书进行校验 ( 防止证书是伪造的 ).
  • 判定证书的有效期是否过期
  • 判定证书的发布机构是否受信任(操作系统中已内置的受信任的证书发布机构)
  • 验证证书是否被篡改:从系统中拿到该证书发布机构的公钥,对签名解密,得到一个 hash (称为数据摘要),设为 hash1。然后计算整个证书的 hash 值,设为 hash2。对比 hash1 hash2 是否相等。如果相等,则说明证书是没有被篡改过的。
那么中间人有没有可能篡改该证书呢?由于他没有 CA 机构的私钥,所以无法 hash 之后用私钥加密形成签名,那么也就没法对篡改后的证书形成匹配的签名。如果强行篡改,客户端收到该证书后会发现明文和签名解密后的值不一致,则说明证书已被篡改,证书不可信,从而终止向服务器传输信息,防止信息泄露给中间人。
对于摘要内容在网络传输的时候加密形成签名的过程
常见的摘要算法有 : MD5 SHA 系列,以 MD5 为例 , 我们不需要研究具体的计算签名的过程 , 只需要了解 MD5 的特点 :
  • 定⻓: 无论多⻓的字符串, 计算出来的 MD5 值都是固定⻓度 (16 字节或者32 字节版本)
  • 分散: 源字符串只要改变一点点, 最终得到的 MD5 值都会差别很大.
  • 不可逆: 通过源字符串生成 MD5 很容易, 但是通过 MD5 还原成原串理论上是不可能的.
正因为 MD5 有这样的特性 , 我们可以认为 如果两个字符串的 MD5 值相同 , 则认为这 两个字符串相同 .

假设我们的证书只是一个简单的字符串 hello, 对这个字符串计算 hash (比如 md5),结果为 BC4B2A76B9719D91,如果 hello 中有任意的字符被篡改了, 比如变成了 hella, 那么计算的 md5 值就会变化很大,如BDBD6F9CF51F2FD8。传输过程中,然后我们可以把这个字符串 hello 和 哈希值 BC4B2A76B9719D91 从服务器返回给客户端, 此时客户端只要计算 hello 的哈希值,看看是不是 BC4B2A76B9719D91 即可如何验证 hello 是否是被篡改过。

完整流程

总结

HTTPS 工作过程中涉及到的密钥有三组 .
  • 第一组(非对称加密): 用于校验证书是否被篡改。服务器持有私钥(私钥在形成 CSR 文件与申请证书时获得),客户端持有公钥(操作系统包含了可信任的 CA 认证机构有哪些,同时持有对应的公钥)。服务器在客户端请求时,返回携带签名的证书。客户端通过这个公钥进行证书验证,保证证书的合法性,进一步保证证书中携带的服务端公钥权威性。
  • 第⼆组(非对称加密): 用于协商生成对称加密的密钥。客户端用收到的 CA 证书中的公钥(是可被信任的)给随机生成的对称加密的密钥加密,传输给服务器,服务器通过私钥解密获取到对称加密密钥。
  • 第三组(对称加密): 客户端和服务器后续传输的数据都通过这个对称密钥加密解密。
其实一切的关键都是围绕这个对称加密的密钥, 其他的机制都是辅助这个密钥工作的。

.

相关文章:

Linux网络 HTTPS 协议原理

概念 HTTPS 也是一个应用层协议,不过 是在 HTTP 协议的基础上引入了一个加密层。因为 HTTP的内容是明文传输的,明文数据会经过路由器、wifi 热点、通信服务运营商、代理服务器等多个物理节点,如果信息在传输过程中被劫持,传输的…...

Idea插件开发

相关操作 执行插件 导出插件 然后到 /build/distributions 目录下面去找...

Java 有很多常用的库

1. 常用工具类库 Apache Commons:提供了大量常用的工具类,如: commons-lang3:字符串、数字、日期等常用工具类。commons-io:IO 操作,文件读写、流处理等。commons-collections4:集合类扩展。 G…...

pytorch实现文本摘要

人工智能例子汇总:AI常见的算法和例子-CSDN博客 import numpy as npfrom modelscope.hub.snapshot_download import snapshot_download from transformers import BertTokenizer, BertModel import torch# 下载模型到本地目录 model_dir snapshot_download(tians…...

C++基础day1

前言:谢谢阿秀,指路阿秀的学习笔记 一、基础语法 1.构造和析构: 类的构造函数是一种特殊的函数,在创建一个新的对象时调用。类的析构函数也是一种特殊的函数,在删除所创建的对象时调用。 构造顺序:父类->子类 析…...

从TinyZero的数据与源码来理解DeepSeek-R1-Zero的强化学习训练过程

1. 引入 TinyZero(参考1)是伯克利的博士生复现DeepSeek-R1-Zero的代码参仓库,他使用veRL来运行RL强化学习方法,对qwen2.5的0.5B、1.5B、3B等模型进行训练,在一个数字游戏数据集上,达到了较好的推理效果。 …...

爬虫基础(四)线程 和 进程 及相关知识点

目录 一、线程和进程 (1)进程 (2)线程 (3)区别 二、串行、并发、并行 (1)串行 (2)并行 (3)并发 三、爬虫中的线程和进程 &am…...

【自开发工具介绍】SQLSERVER的ImpDp和ExpDp工具01

1、开发背景 大家都很熟悉,Oracle提供了Impdp和ExpDp工具,功能很强大,可以进行db的导入导出的处理。但是对于Sqlserver数据库只是提供了简单的图形化的导出导入工具,在实际的开发和生产环境不太可能让用户在图形化的界面选择移行…...

队列—学习

1. 手写队列的实现 使用数组实现队列是一种常见的方法。队列的基本操作包括入队(enqueue)和出队(dequeue)。队列的头部和尾部分别用 head 和 tail 指针表示。 代码实现 const int N 10000; // 定义队列容量,确保够…...

SpringBoot的配置(配置文件、加载顺序、配置原理)

文章目录 SpringBoot的配置(配置文件、加载顺序、配置原理)一、引言二、配置文件1、配置文件的类型1.1、配置文件的使用 2、多环境配置 三、加载顺序四、配置原理五、使用示例1、配置文件2、配置类3、控制器 六、总结 SpringBoot的配置(配置文件、加载顺序、配置原理) 一、引言…...

如何本地部署DeepSeek?DeepThink R1 本地部署全攻略:零基础小白指南。

🚀 离线运行 AI,免费使用 OpenAI 级别推理模型 本教程将手把手教你如何在本地部署 DeepThink R1 AI 模型,让你无需联网就能运行强大的 AI 推理任务。无论你是AI 新手还是资深开发者,都可以轻松上手! 📌 目录…...

陆游的《诗人苦学说》:从藻绘到“功夫在诗外”(中英双语)mastery lies beyond poetry

陆游的《诗人苦学说》:从藻绘到“功夫在诗外” 今天看万维钢的《万万没想到》一书,看到陆游的功夫在诗外的句子,特意去查找这首诗的原文。故而有此文。 我国学人还往往过分强调“功夫在诗外”这句陆游的名言,认为提升综合素质是一…...

Golang —协程池(panjf2000/ants/v2)

Golang —协程池(panjf2000/ants/v2) 1 ants1.1 基本信息1.2 ants 是如何运行的(流程图) 1 ants 1.1 基本信息 代码地址:github.com/panjf2000/ants/v2 介绍:ants是一个高性能的 goroutine 池&#xff0c…...

在 crag 中用 LangGraph 进行评分知识精炼-下

在上一次给大家展示了基本的 Rag 检索过程,着重描述了增强检索中的知识精炼和补充检索,这些都是 crag 的一部分,这篇内容结合 langgraph 给大家展示通过检索增强生成(Retrieval-Augmented Generation, RAG)的工作流&am…...

基于springboot+vue的哈利波特书影音互动科普网站

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...

Cypher入门

文章目录 Cypher入门创建数据查询数据matchoptional matchwhere分页with 更新数据删除数据实例:好友推荐 Cypher入门 Cypher是Neo4j的查询语言。 创建数据 在Neo4j中使用create命令创建节点、关系、属性数据。 create (n {name:$value}) return n //创建节点&am…...

使用Z-score进行数据特征标准化

数据标准化是数据处理过程中非常重要的一步,尤其在构建机器学习模型时尤为关键。标准化的目的是将不同量纲的变量转换到相同的尺度,以避免由于量纲差异导致的模型偏差。Z-score标准化是一种常见且简单的标准化方法,它通过计算数据点与平均值的差异,并将其按标准差进行缩放,…...

初级数据结构:栈和队列

一、栈 (一)、栈的定义 栈是一种遵循后进先出(LIFO,Last In First Out)原则的数据结构。栈的主要操作包括入栈(Push)和出栈(Pop)。入栈操作是将元素添加到栈顶,这一过程中&#xf…...

【思维导图】java

学习计划:将目前已经学的知识点串成一个思维导图。在往后的学习过程中,不断往思维导图里补充,形成自己整个知识体系。对于思维导图里的每个技术知识,自己用简洁的话概括出来, 训练自己的表达能力。 面向对象三大特性 …...

Redis脑裂问题详解及解决方案

Redis是一种高性能的内存数据库,广泛应用于缓存、消息队列等场景。然而,在分布式Redis集群中,脑裂问题(Split-Brain)是一个需要特别关注的复杂问题。本文将详细介绍Redis脑裂问题的成因、影响及解决方案。 一、什么是…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes&#xff0…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

push [特殊字符] present

push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...