当前位置: 首页 > news >正文

稀疏进化训练:机器学习优化算法中的高效解决方案

稀疏进化训练:机器学习优化算法中的高效解决方案

  • 稀疏进化训练:机器学习优化算法中的高效解决方案
    • 引言
    • 第一部分:背景与动机
      • 1.1 传统优化算法的局限性
      • 1.2 进化策略的优势
      • 1.3 稀疏性的重要性
    • 第二部分:稀疏进化训练的核心思想
      • 2.1 稀疏进化训练的基本概念
      • 2.2 稀疏进化训练的数学模型
    • 第三部分:稀疏进化训练的实现细节
      • 3.1 参数更新规则
      • 3.2 实现步骤
    • 第四部分:稀疏进化训练与现有优化算法的对比
      • 4.1 SET与传统梯度下降方法的对比
      • 4.2 SET与进化策略的对比
    • 第五部分:稀疏进化训练在深度学习中的应用
      • 5.1 应用场景
      • 5.2代码例子

稀疏进化训练:机器学习优化算法中的高效解决方案

引言

最近deepseek的爆火无疑说明,在机器学习和深度学习领域,优化算法是模型训练的核心技术之一。近年来,随着模型复杂度的不断提高,传统的优化算法(如随机梯度下降、Adam等)在某些场景下已经难以满足需求。稀疏进化训练(Sparse Evolutionary Training, SET)作为一种新兴的优化方法,结合了进化的思想和稀疏性原理,在多个实际应用中表现出色。

本文将详细介绍稀疏进化训练的核心思想、理论基础、实现细节以及与现有优化算法的对比,并通过Python代码示例展示其在机器学习模型中的具体应用。


第一部分:背景与动机

1.1 传统优化算法的局限性

传统的优化算法(如随机梯度下降(SGD)、Adagrad、Adam等)虽然在许多场景下表现出色,但在以下方面存在不足:

  • 稀疏性问题:在某些任务中(如自然语言处理),模型参数的稀疏性可以帮助减少计算复杂度并提高泛化性能。然而,传统
    优化算法通常无法有效利用这种稀疏性。
  • 全局最优解的搜索能力:传统的梯度下降类方法容易陷入局部最优解,尤其是在高维空间中。

1.2 进化策略的优势

进化策略(Evolution Strategies, ES)是一种基于自然选择和遗传算法思想的优化方法。它通过模拟生物进化的过程来寻找全局
最优解。与传统梯度下降方法相比,进化策略具有以下优势:

  • 全局搜索能力强。
  • 不依赖于目标函数的可微性,适用于复杂的优化场景。

1.3 稀疏性的重要性

在机器学习中,稀疏性是一种重要的特性。通过引入稀疏性约束,模型可以减少参数的数量,从而降低计算复杂度、提升模型的泛
化能力,并减少过拟合的风险。


第二部分:稀疏进化训练的核心思想

2.1 稀疏进化训练的基本概念

稀疏进化训练(SET)是一种结合了进化策略和稀疏性约束的优化方法。其核心思想是在进化的过程中引入稀疏性,通过筛选出重要
的参数更新来提高优化效率。

  • 稀疏性约束:在每一轮迭代中,只对一小部分参数进行更新,其余参数保持不变。
  • 进化策略:利用自然选择的思想,保留最优的参数组合,并逐步淘汰较差的组合。

2.2 稀疏进化训练的数学模型

SET的核心优化目标可以表示为:

min ⁡ θ f ( θ ) + λ ∥ θ ∥ 0 \min_{\theta} f(\theta) + \lambda \| \theta \|_0 θminf(θ)+λθ0

其中:

  • f ( θ ) f(\theta) f(θ) 是模型的目标函数。
  • ∥ θ ∥ 0 \| \theta \|_0 θ0 是参数 θ \theta θ的稀疏性指标(非零元素的数量)。
  • λ \lambda λ 是稀疏性惩罚系数。

通过引入稀疏性约束,SET可以有效地减少优化空间的维度,并提高优化效率。


第三部分:稀疏进化训练的实现细节

3.1 参数更新规则

在每一轮迭代中,SET算法会执行以下步骤:

  1. 生成候选解:基于当前参数 θ \theta θ,生成一组扰动后的候选参数 { θ i } i = 1 N \{\theta_i\}_{i=1}^N {θi}i=1N
  2. 评估适应度:计算每个候选解的适应度值 f ( θ i ) f(\theta_i) f(θi)
  3. 筛选稀疏性好的解:保留适应度值较高的候选解,并对这些解进行稀疏性分析,选择非零参数较少的解作为新的参数更新方
    向。
  4. 更新参数:将筛选后的解合并到当前参数 θ \theta θ中。

3.2 实现步骤

以下是SET算法的具体实现步骤:

  1. 初始化参数 θ \theta θ
  2. 进行多轮迭代:
    • 生成扰动后的候选参数 { θ i } \{\theta_i\} {θi}
    • 计算每个候选解的适应度值 f ( θ i ) f(\theta_i) f(θi)
    • 筛选稀疏性好的解,计算其稀疏性惩罚项。
    • 根据适应度和稀疏性惩罚项更新参数 θ \theta θ
  3. 输出最终优化后的参数。

第四部分:稀疏进化训练与现有优化算法的对比

4.1 SET与传统梯度下降方法的对比

  • 全局搜索能力:SET比传统的梯度下降方法具有更强的全局搜索能力,尤其是在高维空间中。
  • 稀疏性:SET通过引入稀疏性约束,可以更有效地减少参数数量。

4.2 SET与进化策略的对比

  • 效率提升:与纯进化策略相比,SET通过引入稀疏性约束,减少了优化空间的维度,从而提高了优化效率。
  • 适应范围:SET在处理稀疏性问题时具有更强的优势。

第五部分:稀疏进化训练在深度学习中的应用

5.1 应用场景

  • 自然语言处理:在词嵌入、神经机器翻译等任务中,SET可以通过引入稀疏性约束来减少计算复杂度。
  • 图像处理:在图像分类、目标检测等任务中,SET可以帮助模型学习更高效的特征表示。

5.2代码例子

以下是一个简单的深度学习模型优化案例:

import numpy as np
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score# 生成数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2)# 初始化参数
theta = np.random.randn(20)
learning_rate = 0.01
lambda_sparse = 0.1for _ in range(100):# 生成扰动后的候选参数perturbations = np.random.normal(loc=0, scale=0.01, size=(100, 20))candidates = theta + perturbations# 计算适应度值y_pred = np.dot(X, candidates.T)y_pred_labels = np.argmax(y_pred, axis=1)fitness = accuracy_score(y, y_pred_labels)# 筛选稀疏性好的解sparse_scores = np.sum(np.abs(candidates), axis=1)selected_idx = np.argsort(sparse_scores)[:20]selected_candidates = candidates[selected_idx]# 更新参数theta = np.mean(selected_candidates, axis=0)# 最终模型性能
y_pred_final = np.dot(X, theta.reshape(-1, 1))
y_pred_labels_final = np.argmax(y_pred_final, axis=1)
print("Final accuracy:", accuracy_score(y, y_pred_labels_final))

相关文章:

稀疏进化训练:机器学习优化算法中的高效解决方案

稀疏进化训练:机器学习优化算法中的高效解决方案 稀疏进化训练:机器学习优化算法中的高效解决方案引言第一部分:背景与动机1.1 传统优化算法的局限性1.2 进化策略的优势1.3 稀疏性的重要性 第二部分:稀疏进化训练的核心思想2.1 稀…...

10 Flink CDC

10 Flink CDC 1. CDC是什么2. CDC 的种类3. 传统CDC与Flink CDC对比4. Flink-CDC 案例5. Flink SQL 方式的案例 1. CDC是什么 CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数…...

【LeetCode 刷题】回溯算法-子集问题

此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法子集问题相关的题目解析。 文章目录 78.子集90.子集II 78.子集 题目链接 class Solution:def subsets(self, nums: List[int]) -> List[List[int]]:res, path [], []def dfs(start: int) ->…...

OpenCV 版本不兼容导致的问题

问题和解决方案 今天运行如下代码,发生了意外的错误,代码如下,其中输入的 frame 来自于 OpenCV 开启数据流的读取 """ cap cv2.VideoCapture(RTSP_URL) print("链接视频流完成") while True:ret, frame cap.rea…...

低成本、高附加值,具有较强的可扩展性和流通便利性的行业

目录 虚拟资源类 1. 网课教程 2. 设计素材 3. 软件工具 服务类 1. 写作服务 2. 咨询顾问 3. 在线教育 4. 社交媒体管理 虚拟资源类 1. 网课教程 特点:高附加值,可复制性强,市场需求大。 执行流程: 选择领域&#xff1a…...

DirectShow过滤器开发-读视频文件过滤器(再写)

下载本过滤器DLL 本过滤器读取视频文件输出视频流和音频流。流类型由文件决定。已知可读取的文件格式有:AVI,ASF,MOV,MP4,MPG,WMV。 过滤器信息 过滤器名称:读视频文件 过滤器GUID&#xff1a…...

代码练习2.3

终端输入10个学生成绩&#xff0c;使用冒泡排序对学生成绩从低到高排序 #include <stdio.h>void bubbleSort(int arr[], int n) {for (int i 0; i < n-1; i) {for (int j 0; j < n-i-1; j) {if (arr[j] > arr[j1]) {// 交换 arr[j] 和 arr[j1]int temp arr[…...

基于 Redis GEO 实现条件分页查询用户附近的场馆列表

&#x1f3af; 本文档详细介绍了如何使用Redis GEO模块实现场馆位置的存储与查询&#xff0c;以支持“附近场馆”搜索功能。首先&#xff0c;通过微信小程序获取用户当前位置&#xff0c;并将该位置信息与场馆的经纬度数据一同存储至Redis中。利用Redis GEO高效的地理空间索引能…...

【大数据技术】案例01:词频统计样例(hadoop+mapreduce+yarn)

词频统计(hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 在阅读本文前,请确保已经阅读过以上两篇文章,成功搭建了Hadoop+MapReduce+Yarn的大数据集群环境。 写在前面 Wo…...

Selenium 使用指南:从入门到精通

Selenium 使用指南&#xff1a;从入门到精通 Selenium 是一个用于自动化 Web 浏览器操作的强大工具&#xff0c;广泛应用于自动化测试和 Web 数据爬取中。本文将带你从入门到精通地掌握 Selenium&#xff0c;涵盖其基本操作、常用用法以及一个完整的图片爬取示例。 1. 环境配…...

笔试-排列组合

应用 一个长度为[1, 50]、元素都是字符串的非空数组&#xff0c;每个字符串的长度为[1, 30]&#xff0c;代表非负整数&#xff0c;元素可以以“0”开头。例如&#xff1a;[“13”, “045”&#xff0c;“09”&#xff0c;“56”]。 将所有字符串排列组合&#xff0c;拼起来组成…...

Java序列化详解

1 什么是序列化、反序列化 在Java编程实践中&#xff0c;当我们需要持久化Java对象&#xff0c;比如把Java对象保存到文件里&#xff0c;或是在网络中传输Java对象时&#xff0c;序列化机制就发挥着关键作用。 序列化&#xff1a;指的是把数据结构或对象转变为可存储、可传输的…...

ChatGPT与GPT的区别与联系

ChatGPT 和 GPT 都是基于 Transformer 架构的语言模型&#xff0c;但它们有不同的侧重点和应用。下面我们来探讨一下它们的区别与联系。 1. GPT&#xff08;Generative Pre-trained Transformer&#xff09; GPT 是一类由 OpenAI 开发的语言模型&#xff0c;基于 Transformer…...

MySQL入门 – CRUD基本操作

MySQL入门 – CRUD基本操作 Essential CRUD Manipulation to MySQL Database By JacksonML 本文简要介绍操作MySQL数据库的基本操作&#xff0c;即创建(Create), 读取&#xff08;Read&#xff09;, 更新(Update)和删除&#xff08;Delete&#xff09;。 基于数据表的关系型…...

Redis背景介绍

⭐️前言⭐️ 本文主要做Redis相关背景介绍&#xff0c;包括核心能力、重要特性和使用场景。 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f349;博主将持续更新学习记录收获&#xff0c;友友们有任何问题可以在评论区留言 &#x1f349;博客中涉及源码及博主…...

PPT演示设置:插入音频同步切换播放时长计算

PPT中插入音频&同步切换&放时长计算 一、 插入音频及音频设置二、设置页面切换和音频同步三、播放时长计算 一、 插入音频及音频设置 1.插入音频&#xff1a;点击菜单栏插入-音频-选择PC上的音频&#xff08;已存在的音频&#xff09;或者录制音频&#xff08;现场录制…...

DIFY源码解析

偶然发现Github上某位大佬开源的DIFY源码注释和解析&#xff0c;目前还处于陆续不断更新地更新过程中&#xff0c;为大佬的专业和开源贡献精神点赞。先收藏链接&#xff0c;后续慢慢学习。 相关链接如下&#xff1a; DIFY源码解析...

[权限提升] Wdinwos 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权

关注这个专栏的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的&#xff0c;所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…...

【算法】回溯算法专题② ——组合型回溯 + 剪枝 python

目录 前置知识进入正题小试牛刀实战演练总结 前置知识 【算法】回溯算法专题① ——子集型回溯 python 进入正题 组合https://leetcode.cn/problems/combinations/submissions/596357179/ 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以…...

LeetCode:121.买卖股票的最佳时机1

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;121.买卖股票的最佳时机1 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...