word2vec 实战应用介绍
Word2Vec 是一种由 Google 在 2013 年推出的重要词嵌入模型,通过将单词映射为低维向量,实现了对自然语言处理任务的高效支持。其核心思想是利用深度学习技术,通过训练大量文本数据,将单词表示为稠密的向量形式,从而捕捉单词之间的语义和语法关系。以下是关于 Word2Vec 实战应用的详细介绍:
1. Word2Vec 的基本概念与原理
Word2Vec 模型主要分为两种训练方式:连续词袋模型(CBOW)和跳字模型(Skip-gram)。CBOW 是通过上下文预测目标词,而 Skip-gram 则是通过目标词预测上下文。这两种方法都利用了神经网络结构,通过逐层优化参数来提高模型的性能。

- CBOW 模型:根据上下文预测目标词,适用于语义相似性较高的场景。
- Skip-gram 模型:根据目标词预测上下文,适用于捕捉词与词之间复杂关系的场景。
为了提高计算效率,Word2Vec 还引入了层次softmax 和负采样技术,以减少训练过程中的计算复杂度。
2. 实战应用领域
Word2Vec 的应用非常广泛,以下是一些典型的应用场景:
(1)文本分类
Word2Vec 可以用于文本分类任务,通过将文本转换为词向量矩阵,再结合分类器(如 SVM 或深度学习模型)完成分类。例如,在情感分析中,可以通过训练好的词向量模型提取文本特征,并输入到分类器中进行情感极性判断。

(2)聚类分析
通过计算词向量之间的距离,可以对词汇进行聚类分析。例如,将语料库中的单词按照相似度分成不同的类别,用于发现文本中的主题或概念。
(3)同义词查找
Word2Vec 能够捕捉单词之间的语义关系,因此可以用于查找同义词或近义词。例如,输入一个单词后,模型可以返回与其语义相近的其他单词。

(4)机器翻译
在机器翻译任务中,Word2Vec 可以用于构建源语言和目标语言之间的词汇映射关系,从而提升翻译质量。
(5)推荐系统
Word2Vec 可以用于用户行为序列分析,例如通过分析用户的历史行为序列(如下载过的 APP 序列),预测用户可能感兴趣的内容。

(6)问答系统
通过计算问题和答案之间的词向量相似度,可以实现基于语义的问答匹配。
(7)词云生成
利用 Word2Vec 模型生成的词向量,可以实现基于语义权重的词云展示,直观地展示文本中高频词汇及其重要性。

3. 实战案例
(1)中文维基百科词云
使用中文维基百科语料库训练 Word2Vec 模型,并生成词云图。该案例展示了如何从原始数据中提取文本、处理停用词以及训练模型,并最终生成可视化结果。

(2)情感分析
在情感分析任务中,通过训练好的 Word2Vec 模型提取文本特征,并结合情感分类器完成情感极性判断。例如,使用 IMDB 数据集训练模型,并评估其在电影评论分类中的
相关文章:
word2vec 实战应用介绍
Word2Vec 是一种由 Google 在 2013 年推出的重要词嵌入模型,通过将单词映射为低维向量,实现了对自然语言处理任务的高效支持。其核心思想是利用深度学习技术,通过训练大量文本数据,将单词表示为稠密的向量形式,从而捕捉单词之间的语义和语法关系。以下是关于 Word2Vec 实战…...
C# 操作符重载对象详解
.NET学习资料 .NET学习资料 .NET学习资料 一、操作符重载的概念 在 C# 中,操作符重载允许我们为自定义的类或结构体定义操作符的行为。通常,我们熟悉的操作符,如加法()、减法(-)、乘法&#…...
python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理
【1】引言 前序学习进程中,对图像的操作均基于各个像素点上的BGR值不同而展开。 对于彩色图像,每个像素点上的BGR值为三个整数,因为是三通道图像;对于灰度图像,各个像素上的BGR值是一个整数,因为这是单通…...
CNN的各种知识点(四): 非极大值抑制(Non-Maximum Suppression, NMS)
非极大值抑制(Non-Maximum Suppression, NMS) 1. 非极大值抑制(Non-Maximum Suppression, NMS)概念:算法步骤:具体例子:PyTorch实现: 总结: 1. 非极大值抑制(…...
虚幻基础16:locomotion direction
locomotion locomotion:角色运动系统的总称:包含移动、奔跑、跳跃、转向等。 locomotion direction 玩家输入 玩家输入:通常代表玩家想要的移动方向。 direction 可以计算当前朝向与移动方向的Δ。从而实现朝向与移动(玩家输入)方向的分…...
C++游戏开发实战:从引擎架构到物理碰撞
📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 1. 引言 C 是游戏开发中最受欢迎的编程语言之一,因其高性能、低延迟和强大的底层控制能力,被广泛用于游戏…...
代理模式——C++实现
目录 1. 代理模式简介 2. 代码示例 1. 代理模式简介 代理模式是一种行为型模式。 代理模式的定义:由于某些原因需要给某对象提供一个代理以控制该对象的访问。这时,访问对象不适合或者不能直接访问引用目标对象,代理对象作为访问对象和目标…...
什么情况下,C#需要手动进行资源分配和释放?什么又是非托管资源?
扩展:如何使用C#的using语句释放资源?什么是IDisposable接口?与垃圾回收有什么关系?-CSDN博客 托管资源的回收有GC自动触发,而非托管资源需要手动释放。 在 C# 中,非托管资源是指那些不由 CLR(…...
LeetCode 2909. 元素和最小的山形三元组 II
**### LeetCode 2909. 元素和最小的山形三元组 II 问题描述 给定一个下标从 0 开始的整数数组 nums,我们需要找到一个“山形三元组”(i, j, k)满足以下条件: i < j < knums[i] < nums[j] 且 nums[k] < nums[j] 并…...
搬迁至bilibili声明
我将搬迁到bilibili ,用户名:北苏清风 在这个用户名上的文章部分将出自csdn的这个账号,均属于本人原创...
【周易哲学】生辰八字入门讲解(八)
😊你好,我是小航,一个正在变秃、变强的文艺倾年。 🔔本文讲解【周易哲学】生辰八字入门讲解,期待与你一同探索、学习、进步,一起卷起来叭! 目录 一、六亲女命六亲星六亲宫位相互关系 男命六亲星…...
复制粘贴小工具——Ditto
在日常工作中,复制粘贴是常见的操作,但Windows系统自带的剪贴板功能较为有限,只能保存最近一次的复制记录,这对于需要频繁复制粘贴的用户来说不太方便。今天,我们介绍一款开源、免费且功能强大的剪贴板增强工具——Dit…...
3、从langchain到rag
文章目录 本文介绍向量和向量数据库向量向量数据库 索引开始动手实现rag加载文档数据并建立索引将向量存放到向量数据库中检索生成构成一条链 本文介绍 从本节开始,有了上一节的langchain基础学习,接下来使用langchain实现一个rag应用,并稍微…...
稀疏进化训练:机器学习优化算法中的高效解决方案
稀疏进化训练:机器学习优化算法中的高效解决方案 稀疏进化训练:机器学习优化算法中的高效解决方案引言第一部分:背景与动机1.1 传统优化算法的局限性1.2 进化策略的优势1.3 稀疏性的重要性 第二部分:稀疏进化训练的核心思想2.1 稀…...
10 Flink CDC
10 Flink CDC 1. CDC是什么2. CDC 的种类3. 传统CDC与Flink CDC对比4. Flink-CDC 案例5. Flink SQL 方式的案例 1. CDC是什么 CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数…...
【LeetCode 刷题】回溯算法-子集问题
此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法子集问题相关的题目解析。 文章目录 78.子集90.子集II 78.子集 题目链接 class Solution:def subsets(self, nums: List[int]) -> List[List[int]]:res, path [], []def dfs(start: int) ->…...
OpenCV 版本不兼容导致的问题
问题和解决方案 今天运行如下代码,发生了意外的错误,代码如下,其中输入的 frame 来自于 OpenCV 开启数据流的读取 """ cap cv2.VideoCapture(RTSP_URL) print("链接视频流完成") while True:ret, frame cap.rea…...
低成本、高附加值,具有较强的可扩展性和流通便利性的行业
目录 虚拟资源类 1. 网课教程 2. 设计素材 3. 软件工具 服务类 1. 写作服务 2. 咨询顾问 3. 在线教育 4. 社交媒体管理 虚拟资源类 1. 网课教程 特点:高附加值,可复制性强,市场需求大。 执行流程: 选择领域:…...
DirectShow过滤器开发-读视频文件过滤器(再写)
下载本过滤器DLL 本过滤器读取视频文件输出视频流和音频流。流类型由文件决定。已知可读取的文件格式有:AVI,ASF,MOV,MP4,MPG,WMV。 过滤器信息 过滤器名称:读视频文件 过滤器GUID:…...
代码练习2.3
终端输入10个学生成绩,使用冒泡排序对学生成绩从低到高排序 #include <stdio.h>void bubbleSort(int arr[], int n) {for (int i 0; i < n-1; i) {for (int j 0; j < n-i-1; j) {if (arr[j] > arr[j1]) {// 交换 arr[j] 和 arr[j1]int temp arr[…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
