当前位置: 首页 > news >正文

基于最近邻数据进行分类

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

完整代码:

import torch
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt# 生成一个简单的数据集 (2个特征和2个分类)
# X为输入特征,y为标签
X = np.array([[1, 2], [2, 3], [3, 4], [5, 7], [6, 8], [7, 9], [8, 10], [3, 6], [4, 5], [6, 4]])
y = np.array([0, 0, 0, 1, 1, 1, 1, 0, 0, 1])# 数据转换为 PyTorch 张量
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.long)# 打印数据
print("Features:")
print(X_tensor)
print("Labels:")
print(y_tensor)# 使用 sklearn KNN 分类器,调整邻居数量为 5
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X, y)# 预测
y_pred = knn.predict(X)# 计算准确率
accuracy = accuracy_score(y, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")# 可视化数据
plt.figure(figsize=(6, 4))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='bwr', marker='o', edgecolor='k', s=100)
plt.title("KNN Classification Example")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()# 测试:给定新的输入数据进行预测
test_data = np.array([[5, 6], [2, 3]])
test_prediction = knn.predict(test_data)print(f"Predictions for test data {test_data} are {test_prediction}")
  • 生成数据:创建了一个具有 2 个特征和 2 个类别标签的数据集。X 是输入特征,y 是标签。
  • 转换为 PyTorch 张量:虽然这里我们不需要在 KNN 算法中使用 PyTorch,但我们将数据转换为 PyTorch 张量,显示如何与 PyTorch 数据结构进行交互。
  • KNN 分类器:使用 sklearn.neighbors.KNeighborsClassifier 创建并训练 KNN 模型。我们将 n_neighbors 设置为 5,即选择 5 个最近邻。
  • 预测与准确率:使用训练好的模型对所有数据进行预测,并计算准确率。
  • 可视化:使用 matplotlib 将数据点可视化,数据点的颜色根据标签进行区分。
  • 测试预测:我们对新的测试数据点 [5, 6][2, 3] 进行预测。
  • 结果:
  • Features:
    tensor([[ 1.,  2.],[ 2.,  3.],[ 3.,  4.],[ 5.,  7.],[ 6.,  8.],[ 7.,  9.],[ 8., 10.],[ 3.,  6.],[ 4.,  5.],[ 6.,  4.]])
    Labels:
    tensor([0, 0, 0, 1, 1, 1, 1, 0, 0, 1])
    Accuracy: 90.00%
    Predictions for test data [[5 6][2 3]] are [1 0]

相关文章:

基于最近邻数据进行分类

人工智能例子汇总:AI常见的算法和例子-CSDN博客 完整代码: import torch import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt# 生成一个简单的数据…...

DeepSeek V3 vs R1:大模型技术路径的“瑞士军刀“与“手术刀“进化

DeepSeek V3 vs R1:——大模型技术路径的"瑞士军刀"与"手术刀"进化 大模型分水岭:从通用智能到垂直突破 2023年,GPT-4 Turbo的发布标志着通用大模型进入性能瓶颈期。当模型参数量突破万亿级门槛后,研究者们开…...

一、TensorFlow的建模流程

1. 数据准备与预处理: 加载数据:使用内置数据集或自定义数据。 预处理:归一化、调整维度、数据增强。 划分数据集:训练集、验证集、测试集。 转换为Dataset对象:利用tf.data优化数据流水线。 import tensorflow a…...

指导初学者使用Anaconda运行GitHub上One - DM项目的步骤

以下是指导初学者使用Anaconda运行GitHub上One - DM项目的步骤: 1. 安装Anaconda 下载Anaconda: 让初学者访问Anaconda官网(https://www.anaconda.com/products/distribution),根据其操作系统(Windows、M…...

7层还是4层?网络模型又为什么要分层?

~犬📰余~ “我欲贱而贵,愚而智,贫而富,可乎? 曰:其唯学乎” 一、为什么要分层 \quad 网络通信的复杂性促使我们需要一种分层的方法来理解和管理网络。就像建筑一样,我们不会把所有功能都混在一起…...

C++:抽象类习题

题目内容: 求正方体、球、圆柱的表面积,抽象出一个公共的基类Container为抽象类,在其中定义一个公共的数据成员radius(此数据可以作为正方形的边长、球的半径、圆柱体底面圆半径),以及求表面积的纯虚函数area()。由此抽象类派生出…...

C++ 泛型编程指南02 (模板参数的类型推导)

文章目录 一 深入了解C中的函数模板类型推断什么是类型推断?使用Boost TypeIndex库进行类型推断分析示例代码关键点解析 2. 理解函数模板类型推断2.1 指针或引用类型2.1.1 忽略引用2.1.2 保持const属性2.1.3 处理指针类型 2.2 万能引用类型2.3 传值方式2.4 传值方式…...

音视频入门基础:RTP专题(5)——FFmpeg源码中,解析SDP的实现

一、引言 FFmpeg源码中通过ff_sdp_parse函数解析SDP。该函数定义在libavformat/rtsp.c中: int ff_sdp_parse(AVFormatContext *s, const char *content) {const char *p;int letter, i;char buf[SDP_MAX_SIZE], *q;SDPParseState sdp_parse_state { { 0 } }, *s1…...

计算机网络 应用层 笔记 (电子邮件系统,SMTP,POP3,MIME,IMAP,万维网,HTTP,html)

电子邮件系统: SMTP协议 基本概念 工作原理 连接建立: 命令交互 客户端发送命令: 服务器响应: 邮件传输: 连接关闭: 主要命令 邮件发送流程 SMTP的缺点: MIME: POP3协议 基本概念…...

【视频+图文详解】HTML基础3-html常用标签

图文教程 html常用标签 常用标签 1. 文档结构 <!DOCTYPE html>&#xff1a;声明HTML文档类型。<html>&#xff1a;定义HTML文档的根元素。<head>&#xff1a;定义文档头部&#xff0c;包含元数据。<title>&#xff1a;设置网页标题&#xff0c;浏览…...

FreeRTOS学习 --- 消息队列

队列简介 队列是任务到任务、任务到中断、中断到任务数据交流的一种机制&#xff08;消息传递&#xff09; 全局变量的弊端&#xff1a;数据无保护&#xff0c;导致数据不安全&#xff0c;当多个任务同时对该变量操作时&#xff0c;数据易受损 使用队列的情况如下&#xff1a;…...

PHP If...Else 语句详解

PHP If...Else 语句详解 引言 在PHP编程中&#xff0c;if...else语句是流程控制的重要组成部分&#xff0c;它允许程序根据条件判断执行不同的代码块。本文将详细解析PHP中的if...else语句&#xff0c;包括其基本用法、高级技巧以及注意事项。 一、基本用法 if...else语句的…...

pytorch使用SVM实现文本分类

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 完整代码&#xff1a; import torch import torch.nn as nn import torch.optim as optim import jieba import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extract…...

安卓(android)读取手机通讯录【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可在代码地址查看&#xff09; 1.熟悉内容提供者(Content Provider)的概念和作用。 2.掌握内容提供者的创建和使用方法。 4.掌握内容URI的结构和用途。 二、实验条件 1.熟悉内容提供者的工作原理。 2.掌握内容提供者访问其…...

【Qt】常用的容器

Qt提供了多个基于模板的容器类&#xff0c;这些容器类可用于存储指定类型的数据项。例如常用的字符串列表类 QStringList 可用来操作一个 QList<QString>列表。 Qt的容器类比标准模板库(standard template library&#xff0c;STL)中的容器类更轻巧、使用更安全且更易于使…...

基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…...

分布式事务组件Seata简介与使用,搭配Nacos统一管理服务端和客户端配置

文章目录 一. Seata简介二. 官方文档三. Seata分布式事务代码实现0. 环境简介1. 添加undo_log表2. 添加依赖3. 添加配置4. 开启Seata事务管理5. 启动演示 四. Seata Server配置Nacos1. 修改配置类型2. 创建Nacos配置 五. Seata Client配置Nacos1. 增加Seata关联Nacos的配置2. 在…...

JavaScript常用的内置构造函数

JavaScript作为一种广泛应用的编程语言&#xff0c;提供了丰富的内置构造函数&#xff0c;帮助开发者处理不同类型的数据和操作。这些内置构造函数在创建和操作对象时非常有用。本文将详细介绍JavaScript中常用的内置构造函数及其用途。 常用内置构造函数概述 1. Object Obj…...

25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表

目录 240. 搜索二维矩阵 II题目描述题解 148. 排序链表题目描述题解 240. 搜索二维矩阵 II 点此跳转题目链接 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到…...

MQTT知识

MQTT协议 MQTT 是一种基于发布/订阅模式的轻量级消息传输协议&#xff0c;专门针对低带宽和不稳定网络环境的物联网应用而设计&#xff0c;可以用极少的代码为联网设备提供实时可靠的消息服务。MQTT 协议广泛应用于物联网、移动互联网、智能硬件、车联网、智慧城市、远程医疗、…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...