预防和应对DDoS的方法
DDoS发起者通过大量的网络流量来中断服务器、服务或网络的正常运行,通常由多个受感染的计算机或联网设备(包括物联网设备)发起。
换种通俗的说法,可以将其想象成高速公路上的一次突然的大规模交通堵塞,阻止了正常的通勤者(即您的网站访问者)到达目的地。
在这篇文章中,我们将介绍一些基本的如何阻止DDoS的方法,并防止其未来再次发生。
DDoS类型
以下是几种最常见的DDoS类型:
基于流量的DDoS攻击
基于流量的 DDoS 攻击的目的是使网站带宽过载或导致 CPU 或 IOPS 使用问题。如果您的服务器出现资源过载问题,则攻击已成功。例如:
UDP 洪水攻击
ICMP 洪水
Ping 洪水
基于协议的DDoS攻击
基于协议的 DDoS 攻击的目的是利用第 3 层和第 4 层协议栈中的弱点来消耗服务器或网络硬件资源,从而导致服务中断。如果攻击者发送的带宽超过您的网络端口可以处理的带宽,或者发送的数据包超过您的服务器可以处理的数据包,则攻击成功。例如:
死亡之Ping
SYN洪泛
应用层DDoS攻击
应用层攻击的目标是针对 CPU、内存或专注于 Web 应用层的资源,包括攻击 Web 服务器、运行 PHP 脚本或联系数据库以加载单个网页。例如:
针对DNS服务器的攻击
第七层HTTP洪泛缓存绕过攻击
DDoS攻击的影响
如果未能做好防护或者在受到攻击后未能有效缓解DDoS攻击,可能会造成不可预知的流量损失;而且这段时间还可能导致声誉和销售损失。这些会对您的业务造成最大影响。
几个重要的事实:
1.发起DDoS攻击的成本很低,购买一周的DDoS攻击在黑市上只需150美元。
2.每天全球发生超过2000次DDoS攻击。
3.DDoS攻击可能给受害者带来数千甚至数百万美元的损失。此外还有一些无法估量的成本,例如时间和带宽费用。
如何检测DDoS攻击
流量急剧增加是 DDoS 攻击的危险信号,监控网站流量,寻找突发峰值是检测DDoS攻击的关键。
以下是一些可能指向DDoS攻击的红旗信号:
流量突然激增。
来自某些国家/地区的大量访问。
某些时段的流量异常增加。
DDoS攻击期间该做什么
系统检查表:制定一份完整的资产清单,以确保正确识别和预防 DDoS。使用过滤工具还可以确保硬件/软件组件得到正确配置。
制定响应计划:明确关键团队成员的职责,确保对攻击做出有组织的反应;提供 24/7 响应窗口。
定义替代方法或解决方案:确保您的团队成员确切知道在攻击超出您的能力范围时该联系谁。
沟通预计的停机时间:如果您的网站上有客户,请考虑制定沟通工作流程,以确保客户和用户了解攻击可能导致的任何性能下降。
如何阻止DDoS攻击
以下是几个阻止DDoS攻击的重要步骤:
识别DDoS攻击
尽早发现 DDoS 攻击对于减少网站的影响和停机时间至关重要。如果您正在运行自己的 Web 服务器,请确保您拥有可以帮助您监控何时受到 DDoS 攻击的服务。
保持足够的带宽和资源
您的网络服务器应该已经设置好,以应对意外的流量增长,尤其是在您投放广告、活动或特价商品时。这些额外的资源还可以为您争取几分钟时间来应对 DDoS 攻击,以免您的网站资源不堪重负。
除此之外,您也可以使用带有DDoS防护的的服务器,例如比如Hostease就有专业的高防服务器,可以提供1000+Gbps的防御,有效阻止网络攻击,可以大幅度提升您的在线业务的安全性。
保护网络边界
如果您运行自己的 Web 服务器,可以采取一些步骤来减轻 DDoS 攻击的影响。例如,您可以限制 Web 服务器随时间接受的请求数量,如果您能够识别攻击的来源,则可以添加过滤器以丢弃数据包(如果您从特定来源知道的话),或者设置较低的 ICMP、SYN 和 UDP 洪水丢弃阈值,然而这些措施对于特别大规模、高度复杂的 DDoS 攻击并不是特别有效。
利用Web应用防火墙(WAF)
WAF可以帮助缓解DDoS攻击,提供额外的保护层。
启用国家/地区阻止
国家/地区阻止可以有效减少风险,尤其是在特定地区集中的攻击中。
相关文章:
预防和应对DDoS的方法
DDoS发起者通过大量的网络流量来中断服务器、服务或网络的正常运行,通常由多个受感染的计算机或联网设备(包括物联网设备)发起。 换种通俗的说法,可以将其想象成高速公路上的一次突然的大规模交通堵塞,阻止了正常的通勤…...

51单片机开发:独立按键实验
实验目的:按下键盘1时,点亮LED灯1。 键盘原理图如下图所示,可见,由于接GND,当键盘按下时,P3相应的端口为低电平。 键盘按下时会出现抖动,时间通常为5-10ms,代码中通过延时函数delay…...
02.04 数据类型
请写出以下几个数据的类型: 整数 a ----->int a的地址 ----->int* 存放a的数组b ----->int[] 存放a的地址的数组c ----->int*[] b的地址 ----->int* c的地址 ----->int** 指向printf函数的指针d ----->int (*)(const char*, ...) …...

FPGA学习篇——开篇之作
今天正式开始学FPGA啦,接下来将会编写FPGA学习篇来记录自己学习FPGA 的过程! 今天是大年初六,简单学一下FPGA的相关概念叭叭叭! 一:数字系统设计流程 一个数字系统的设计分为前端设计和后端设计。在我看来࿰…...

【Cadence仿真技巧学习笔记】求解65nm库晶体管参数un, e0, Cox
在设计放大器的第一步就是确定好晶体管参数和直流工作点的选取。通过阅读文献,我了解到L波段低噪声放大器的mos器件最优宽度计算公式为 W o p t . p 3 2 1 ω L C o x R s Q s p W_{opt.p}\frac{3}{2}\frac{1}{\omega LC_{ox}R_{s}Q_{sp}} Wopt.p23ωLCoxRs…...

【RocketMQ】RocketMq之IndexFile深入研究
一:RocketMq 整体文件存储介绍 存储⽂件主要分为三个部分: CommitLog:存储消息的元数据。所有消息都会顺序存⼊到CommitLog⽂件当中。CommitLog由多个⽂件组成,每个⽂件固定⼤⼩1G。以第⼀条消 息的偏移量为⽂件名。 ConsumerQue…...
小白零基础--CPP多线程
进程 进程就是运行中的程序线程进程中的进程 1、C11 Thread线程库基础 #include <iostream> #include <thread> #include<string>void printthread(std::string msg){std::cout<<msg<<std::endl;for (int i 0; i < 1000; i){std::cout<…...
利用deepseek参与软件测试 基本架构如何 又该在什么环节接入deepseek
利用DeepSeek参与软件测试,可以考虑以下基本架构和接入环节: ### 基本架构 - **数据层** - **测试数据存储**:用于存放各种测试数据,包括正常输入数据、边界值数据、异常数据等,这些数据可以作为DeepSeek的输入&…...

大模型微调技术总结及使用GPU对VisualGLM-6B进行高效微调
1. 概述 在深度学习中,微调(Fine-tuning)是一种重要的技术,用于改进预训练模型的性能。在预训练模型的基础上,针对特定任务(如文本分类、机器翻译、情感分析等),使用相对较小的有监…...

WPF进阶 | WPF 样式与模板:打造个性化用户界面的利器
WPF进阶 | WPF 样式与模板:打造个性化用户界面的利器 一、前言二、WPF 样式基础2.1 什么是样式2.2 样式的定义2.3 样式的应用 三、WPF 模板基础3.1 什么是模板3.2 控件模板3.3 数据模板 四、样式与模板的高级应用4.1 样式继承4.2 模板绑定4.3 资源字典 五、实际应用…...

Java 大视界 -- Java 大数据在自动驾驶中的数据处理与决策支持(68)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...

自动化构建-make/Makefile 【Linux基础开发工具】
文章目录 一、背景二、Makefile编译过程三、变量四、变量赋值1、""是最普通的等号2、“:” 表示直接赋值3、“?” 表示如果该变量没有被赋值,4、""和写代码是一样的, 五、预定义变量六、函数**通配符** 七、伪目标 .PHONY八、其他常…...

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…...

通信方式、点对点通信、集合通信
文章目录 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!通信实现方式:机器内通信、机器间通信通信实现方式:通讯协调通信实现方式:机器内通信:PCIe通信实现方式:机器内通信:NVLink通信实现…...

TCP编程
1.socket函数 int socket(int domain, int type, int protocol); 头文件:include<sys/types.h>,include<sys/socket.h> 参数 int domain AF_INET: IPv4 Internet protocols AF_INET6: IPv6 Internet protocols AF_UNIX, AF_LOCAL : Local…...
OpenAI 实战进阶教程 - 第七节: 与数据库集成 - 生成 SQL 查询与优化
内容目标 学习如何使用 OpenAI 辅助生成和优化多表 SQL 查询了解如何获取数据库结构信息并与 OpenAI 结合使用 实操步骤 1. 创建 SQLite 数据库示例 创建数据库及表结构: import sqlite3# 连接 SQLite 数据库(如果不存在则创建) conn sq…...
Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
Apache Iceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。 Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照…...

QT交叉编译环境搭建(Cmake和qmake)
介绍一共有两种方法(基于qmake和cmake): 1.直接调用虚拟机中的交叉编译工具编译 2.在QT中新建编译套件kits camke和qmake的区别:CMake 和 qmake 都是自动化构建工具,用于简化构建过程,管理编译设置&…...

Turing Complete-成对的麻烦
这一关是4个输入,当输入中1的个数大于等于2时,输出1。 那么首先用个与门来检测4个输入中,1的个数是否大于等于2,当大于等于2时,至少会有一个与门输出1,所以再用两级或门讲6个与门的输出取或,得…...
寒假刷题Day20
一、80. 删除有序数组中的重复项 II class Solution { public:int removeDuplicates(vector<int>& nums) {int n nums.size();int stackSize 2;for(int i 2; i < n; i){if(nums[i] ! nums[stackSize - 2]){nums[stackSize] nums[i];}}return min(stackSize, …...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...