【LLM-agent】(task2)用llama-index搭建AI Agent
note
- LlamaIndex 实现 Agent 需要导入
ReActAgent
和Function Tool
,循环执行:推理、行动、观察、优化推理、重复进行。可以在arize_phoenix
中看到 agent 的具体提示词,工具被装换成了提示词 - ReActAgent 使得业务自动向代码转换成为可能,只要有 API 模型就可以调用,很多业务场景都适用,LlamaIndex 提供了一些开源的工具实现,可以到官网查看。
- 虽然 Agent 可以实现业务功能, 但是一个 Agent 不能完成所有的功能,这也符合软件解耦的设计原则,不同的 Agent 可以完成不同的任务,各司其职,Agent 之间可以进行交互、通信,类似于微服务。
文章目录
- note
- 一、LlamaIndex中agent的构建
- 二、代码实践
- Reference
一、LlamaIndex中agent的构建
步骤:
- 定义工具函数(大模型会根据函数的注释来判断使用哪个函数来完成任务)
- 把工具函数放入FunctionTool对象中,供Agent能够使用
- LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool
- ReActAgent 通过结合推理(Reasoning)和行动(Acting)来创建动态的 LLM Agent 的框架。该方法允许 LLM 模型通过在复杂环境中交替进行推理步骤和行动步骤来更有效地执行任务。ReActAgent 将推理和动作形成了闭环,Agent 可以自己完成给定的任务。
一个典型的 ReActAgent 遵循以下循环:
- 初始推理:代理首先进行推理步骤,以理解任务、收集相关信息并决定下一步行为。
- 行动:代理基于其推理采取行动——例如查询API、检索数据或执行命令。
- 观察:代理观察行动的结果并收集任何新的信息。
- 优化推理:利用新信息,代理再次进行推理,更新其理解、计划或假设。
- 重复:代理重复该循环,在推理和行动之间交替,直到达到满意的结论或完成任务。
二、代码实践
import os
from dotenv import load_dotenv# 加载环境变量
load_dotenv()
# 初始化变量
base_url = None
chat_model = None
api_key = None# 使用with语句打开文件,确保文件使用完毕后自动关闭
env_path = "/Users/guomiansheng/Desktop/LLM/llm_app/wow-agent/.env.txt"
with open(env_path, 'r') as file:# 逐行读取文件for line in file:# 移除字符串头尾的空白字符(包括'\n')line = line.strip()# 检查并解析变量if "base_url" in line:base_url = line.split('=', 1)[1].strip().strip('"')elif "chat_model" in line:chat_model = line.split('=', 1)[1].strip().strip('"')elif "ZHIPU_API_KEY" in line:api_key = line.split('=', 1)[1].strip().strip('"')# 打印变量以验证
print(f"base_url: {base_url}")
print(f"chat_model: {chat_model}")
print(f"ZHIPU_API_KEY: {api_key}")from openai import OpenAI
client = OpenAI(api_key = api_key,base_url = base_url
)
print(client)def get_completion(prompt):response = client.chat.completions.create(model="glm-4-flash", # 填写需要调用的模型名称messages=[{"role": "user", "content": prompt},],)return response.choices[0].message.content# 用llama-index
from openai import OpenAI
from pydantic import Field # 导入Field,用于Pydantic模型中定义字段的元数据
from llama_index.core.llms import (CustomLLM,CompletionResponse,LLMMetadata,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import List, Any, Generator# 定义OurLLM类,继承自CustomLLM基类
class OurLLM(CustomLLM):api_key: str = Field(default=api_key)base_url: str = Field(default=base_url)model_name: str = Field(default=chat_model)client: OpenAI = Field(default=None, exclude=True) # 显式声明 client 字段def __init__(self, api_key: str, base_url: str, model_name: str = chat_model, **data: Any):super().__init__(**data)self.api_key = api_keyself.base_url = base_urlself.model_name = model_nameself.client = OpenAI(api_key=self.api_key, base_url=self.base_url) # 使用传入的api_key和base_url初始化 client 实例@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""return LLMMetadata(model_name=self.model_name,)@llm_completion_callback()def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:response = self.client.chat.completions.create(model=self.model_name, messages=[{"role": "user", "content": prompt}])if hasattr(response, 'choices') and len(response.choices) > 0:response_text = response.choices[0].message.contentreturn CompletionResponse(text=response_text)else:raise Exception(f"Unexpected response format: {response}")@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> Generator[CompletionResponse, None, None]:response = self.client.chat.completions.create(model=self.model_name,messages=[{"role": "user", "content": prompt}],stream=True)try:for chunk in response:chunk_message = chunk.choices[0].deltaif not chunk_message.content:continuecontent = chunk_message.contentyield CompletionResponse(text=content, delta=content)except Exception as e:raise Exception(f"Unexpected response format: {e}")llm = OurLLM(api_key=api_key, base_url=base_url, model_name=chat_model)
# print(llm)
# 测试模型是否能正常回答
response = llm.stream_complete("你是谁?")
for chunk in response:print(chunk, end="", flush=True)import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..")))
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTooldef multiply(a: float, b: float) -> float:"""Multiply two numbers and returns the product"""return a * bdef add(a: float, b: float) -> float:"""Add two numbers and returns the sum"""return a + b# 定义个类似天气预报的function
def get_weather(city: str) -> int:"""Gets the weather temperature of a specified city.Args:city (str): The name or abbreviation of the city.Returns:int: The temperature of the city. Returns 20 for 'NY' (New York),30 for 'BJ' (Beijing), and -1 for unknown cities."""# Convert the input city to uppercase to handle case-insensitive comparisonscity = city.upper()# Check if the city is New York ('NY')if city == "NY":return 20 # Return 20°C for New York# Check if the city is Beijing ('BJ')elif city == "BJ":return 30 # Return 30°C for Beijing# If the city is neither 'NY' nor 'BJ', return -1 to indicate unknown cityelse:return -1def main():multiply_tool = FunctionTool.from_defaults(fn=multiply)add_tool = FunctionTool.from_defaults(fn=add)# 创建ReActAgent实例agent = ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True)response = agent.chat("20+(2*4)等于多少?使用工具计算每一步")print(f"第一个agent的结果: ", response, "\n")weather_tool = FunctionTool.from_defaults(fn=get_weather)agent = ReActAgent.from_tools([multiply_tool, add_tool, weather_tool], llm=llm, verbose=True)response = agent.chat("纽约天气怎么样?")print(f"第二个agent的结果: ", response)if __name__ == "__main__":main()
输出的结果:
(1)计算的例子:
- 将提问中的计算步骤分别利用了我们自定义的函数 add 和 multiply,比task1只能控制prompt情况更加自由了
(2)天气预报的例子
- 可以在
arize_phoenix
中看到 agent 的具体提示词,工具被装换成了提示词 - ReActAgent 使得业务自动向代码转换成为可能,只要有 API 模型就可以调用,很多业务场景都适用,LlamaIndex 提供了一些开源的工具实现,可以到官网查看。
- 虽然 Agent 可以实现业务功能, 但是一个 Agent 不能完成所有的功能,这也符合软件解耦的设计原则,不同的 Agent 可以完成不同的任务,各司其职,Agent 之间可以进行交互、通信,类似于微服务。
Reference
[1] 官方文档:https://docs.cloud.llamaindex.ai/
[2] https://github.com/datawhalechina/wow-agent
[3] https://www.datawhale.cn/learn/summary/86
相关文章:

【LLM-agent】(task2)用llama-index搭建AI Agent
note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool,循环执行:推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词,工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…...
SpringAI 人工智能
随着 AI 技术的不断发展,越来越多的企业开始将 AI 模型集成到其业务系统中,从而提升系统的智能化水平、自动化程度和用户体验。在此背景下,Spring AI 作为一个企业级 AI 框架,提供了丰富的工具和机制,可以帮助开发者将…...
【axios二次封装】
axios二次封装 安装封装使用 安装 pnpm add axios封装 // 进行axios二次封装:使用请求与响应拦截器 import axios from axios import { ElMessage } from element-plus//创建axios实例 const request axios.create({baseURL: import.meta.env.VITE_APP_BASE_API,…...
P7497 四方喝彩 Solution
Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1,a2,⋯,an),有 m m m 个操作,分四种: add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对于所有 i ∈ [ l , r ] i \in [l,r…...

深入剖析 Bitmap 数据结构:原理、应用与优化策略
深入理解 Bitmap 数据结构 一、引言 在计算机科学领域,数据的高效存储和快速处理一直是核心问题。随着数据量的不断增长,如何用最少的空间和最快的速度来表示和操作数据变得至关重要。Bitmap(位图)作为一种简洁而强大的数据结构…...

bypass hcaptcha、hcaptcha逆向
可以过steam,已支持并发,欢迎询问! 有事危,ProfessorLuoMing...
WebForms DataList 深入解析
WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…...
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结 1、一个数组解决很麻烦引出的问题1.1、RAW 文件尾部数据如下:1.2、自定义标头 ADD 或 DEL 的数据结构如下: 2、程序 C# 源代码的编写和剖析2.1、使用 ref 关键字,通过引用将参数传递,以…...

【C++基础】字符串/字符读取函数解析
最近在学C以及STL,打个基础 参考: c中的char[] ,char* ,string三种字符串变量转化的兼容原则 c读取字符串和字符的6种函数 字符串结构 首先明确三种字符串结构的兼容关系:string>char*>char [] string最灵活,内置增删查改…...

大模型-CLIP 详细介绍
CLIP简介 CLIP(Contrastive Language–Image Pre-training)是由OpenAI在2021年提出的一种多模态机器学习模型。它旨在通过大量的文本-图像对进行训练,从而学会理解图像内容,并能将这些内容与相应的自然语言描述相匹配。CLIP的核心…...
1.4 Go 数组
一、数组 1、简介 数组是切片的基础 数组是一个固定长度、由相同类型元素组成的集合。在 Go 语言中,数组的长度是类型的一部分,因此 [5]int 和 [10]int 是两种不同的类型。数组的大小在声明时确定,且不可更改。 简单来说,数组…...
WebSocket——环境搭建与多环境配置
一、前言:为什么要使用多环境配置? 在开发过程中,我们通常会遇到多个不同的环境,比如开发环境(Dev)、测试环境(Test)、生产环境(Prod)等。每个环境的配置和需…...

三、递推关系与母函数,《组合数学(第4版)》卢开澄 卢华明
文章目录 一、似函数、非函数1.1 母函数1.2 母函数的简单应用1.3 整数拆分1.4 Ferrers 图像1.5 母函数能做什么1.6 递推关系1.6.1 Hanoi 问题1.6.2 偶数个5怎么算 1.7 Fibonacci 序列1.7.1 Fibonacci 的奇妙性质1.7.2 Fibonacci 恒等式1.7.3 Fibonacci 的直接表达式1.7.4 Fibon…...

线程互斥同步
前言: 简单回顾一下上文所学,上文我们最重要核心的工作就是介绍了我们线程自己的LWP和tid究竟是个什么,总结一句话,就是tid是用户视角下所认为的概念,因为在Linux系统中,从来没有线程这一说法,…...
DeepSeek R1 AI 论文翻译
摘要 原文地址: DeepSeek R1 AI 论文翻译 我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(…...

如何计算态势感知率?
态势感知率(Situational Awareness Rate)的计算通常需要结合具体应用场景和定义目标,通常涉及对感知、理解、预测三个层次的量化分析。不同领域(如网络安全、军事、工业控制等)可能有不同的量化方式。通用思路和常见方…...
二、CSS笔记
(一)css概述 1、定义 CSS是Cascading Style Sheets的简称,中文称为层叠样式表,用来控制网页数据的表现,可以使网页的表现与数据内容分离。 2、要点 怎么找到标签怎么操作标签对象(element) 3、css的四种引入方式 3.1 行内式 在标签的style属性中设定CSS样式。这种方…...

Alibaba开发规范_异常日志之日志规约:最佳实践与常见陷阱
文章目录 引言1. 使用SLF4J日志门面规则解释代码示例正例反例 2. 日志文件的保存时间规则解释 3. 日志文件的命名规范规则解释代码示例正例反例 4. 使用占位符进行日志拼接规则解释代码示例正例反例 5. 日志级别的开关判断规则解释代码示例正例反例 6. 避免重复打印日志规则解释…...
使用istio实现权重路由
istio概述 **概述:**Istio 是一个开源的 服务网格(Service Mesh)解决方案,主要用于管理、保护和监控微服务架构中的服务通信。它为微服务提供了基础设施层的控制功能,不需要更改应用程序的代码,从而解决服…...
M. Triangle Construction
题目链接:Problem - 1906M - Codeforces 题目大意:给一个 n 边形, 每一个边上有a[ i ] 个点, 在此多边形上求可以连的三角形有多少个, 每个点只能用一次。 输入: 第一行是一个整数 N ( 3 ≤ N ≤ 200000…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...