强化学习笔记(5)——PPO
PPO视频课程来源
首先理解采样期望的转换

变量x在p(x)分布下,函数f(x)的期望 等于f(x)乘以对应出现概率p(x)的累加
经过转换后变成
x在q(x)分布下,f(x)*p(x)/q(x) 的期望。
起因是:求最大化回报的期望,所以对ceta求梯度



具体举例:上述公式计算的流程?如何求一条轨迹的梯度?
我理解就算是概率相乘> 一回合的回报乘以该回合梯度除以该轨迹(s,a,r,s,a…)出现概率
如何求一条轨迹的梯度?
然后PPO 推倒,对数 概率连乘,等于概率累加

但这样有问题:用一整个回合的回报来计算梯度,会导致“未来的动作”影响过去的状态,且 优势情况下,惩罚不明显
于是改成:
将优势函数 转换成值函数表示,然后写出多步优势函数即推导出GAE
其实就是用走了不同步的Q(s,a)-V(s) ,然后加权
加负号将最大化期望转成loss函数更新
PPO 使用了一个重要性采样比
这个比值衡量了新策略和旧策略在选择动作 at时的相对概率
为了防止:过去参数ceta’ 和 ceta 差距不要太大,有两种衡量方式;
1:KL散度 :这貌似又叫TRPO
2:clip截断防止差的太大
伪代码

用old策略网络做动作和环境交互,然后梯度更新,每过K个epochs将old参数复制给new
相关文章:
强化学习笔记(5)——PPO
PPO视频课程来源 首先理解采样期望的转换 变量x在p(x)分布下,函数f(x)的期望 等于f(x)乘以对应出现概率p(x)的累加 经过转换后变成 x在q(x)分布下,f(x)*p(x)/q(x) 的期望。 起因是:求最大化回报的期望,所以对ceta求梯度 具体举例…...
【C语言入门】解锁核心关键字的终极奥秘与实战应用(三)
目录 一、auto 1.1. 作用 1.2. 特性 1.3. 代码示例 二、register 2.1. 作用 2.2. 特性 2.3. 代码示例 三、static 3.1. 修饰局部变量 3.2. 修饰全局变量 3.3. 修饰函数 四、extern 4.1. 作用 4.2. 特性 4.3. 代码示例 五、volatile 5.1. 作用 5.2. 代码示例…...
寒假day10
第十天:请写出以下几个数据的类型 整数 a int a的地址 int* 存放a的数组b …...
本地部署与使用SenseVoice语音大模型简析
前言 SenseVoice 是一种语音基础模型,具有多种语音理解功能,包括自动语音识别 (ASR)、口语识别 (LID)、语音情感识别 (SER) 和音频事件检测 (AED)。本博客将指导您安装和使用 SenseVoice 模型,使其尽可能方便用户使用。 Github 仓库链接: ht…...
Kafka SASL/SCRAM介绍
文章目录 Kafka SASL/SCRAM介绍1. SASL/SCRAM 认证机制2. SASL/SCRAM 认证工作原理2.1 SCRAM 认证原理2.1.1 密码存储和加盐2.1.2 SCRAM 认证流程 2.2 SCRAM 认证的关键算法2.3 SCRAM 密码存储2.4 SCRAM 密码管理 3. 配置和使用 Kafka SASL/SCRAM3.1 Kafka 服务器端配置3.2 创建…...
中间件漏洞之CVE-2024-53677
目录 什么是struts?CVE-2024-53677简介影响版本复现环境搭建漏洞利用修复 什么是struts? 在早期的 Java Web 开发中,代码往往混乱不堪,难以维护和扩展。比如,一个简单的用户登录功能,可能在不同的 Java 类…...
pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)
以下是一个完整的词嵌入(Word Embedding)示例代码,使用 modelscope 下载 tiansz/bert-base-chinese 模型,并通过 transformers 加载模型,获取中文句子的词嵌入。 from modelscope.hub.snapshot_download import snaps…...
Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)
文章目录 一、环境准备二、安装Ollama2.1 访问Ollama官方网站2.2 下载适用于Windows的安装包2.3 安装Ollama安装包2.4 指定Ollama安装目录2.5 指定Ollama的大模型的存储目录 三、选择DeepSeek R1模型四、下载并运行DeepSeek R1模型五、常见问题解答六、使用Chatbox进行交互6.1 …...
区间覆盖问题
文章目录 1. 题面2. 简单分析3. 代码解答4. TLE的2点可能 1. 题面 给定 N N N个区间 [ a i , b i ] [a_i,b_i] [ai,bi] 以及一个区间 [ s , t ] [s,t] [s,t],请你选择尽量少的区间,将指定区间完全覆盖。 输出最少区间数,如果无法完全…...
【LLM-agent】(task2)用llama-index搭建AI Agent
note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool,循环执行:推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词,工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…...
SpringAI 人工智能
随着 AI 技术的不断发展,越来越多的企业开始将 AI 模型集成到其业务系统中,从而提升系统的智能化水平、自动化程度和用户体验。在此背景下,Spring AI 作为一个企业级 AI 框架,提供了丰富的工具和机制,可以帮助开发者将…...
【axios二次封装】
axios二次封装 安装封装使用 安装 pnpm add axios封装 // 进行axios二次封装:使用请求与响应拦截器 import axios from axios import { ElMessage } from element-plus//创建axios实例 const request axios.create({baseURL: import.meta.env.VITE_APP_BASE_API,…...
P7497 四方喝彩 Solution
Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1,a2,⋯,an),有 m m m 个操作,分四种: add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对于所有 i ∈ [ l , r ] i \in [l,r…...
深入剖析 Bitmap 数据结构:原理、应用与优化策略
深入理解 Bitmap 数据结构 一、引言 在计算机科学领域,数据的高效存储和快速处理一直是核心问题。随着数据量的不断增长,如何用最少的空间和最快的速度来表示和操作数据变得至关重要。Bitmap(位图)作为一种简洁而强大的数据结构…...
bypass hcaptcha、hcaptcha逆向
可以过steam,已支持并发,欢迎询问! 有事危,ProfessorLuoMing...
WebForms DataList 深入解析
WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…...
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结 1、一个数组解决很麻烦引出的问题1.1、RAW 文件尾部数据如下:1.2、自定义标头 ADD 或 DEL 的数据结构如下: 2、程序 C# 源代码的编写和剖析2.1、使用 ref 关键字,通过引用将参数传递,以…...
【C++基础】字符串/字符读取函数解析
最近在学C以及STL,打个基础 参考: c中的char[] ,char* ,string三种字符串变量转化的兼容原则 c读取字符串和字符的6种函数 字符串结构 首先明确三种字符串结构的兼容关系:string>char*>char [] string最灵活,内置增删查改…...
大模型-CLIP 详细介绍
CLIP简介 CLIP(Contrastive Language–Image Pre-training)是由OpenAI在2021年提出的一种多模态机器学习模型。它旨在通过大量的文本-图像对进行训练,从而学会理解图像内容,并能将这些内容与相应的自然语言描述相匹配。CLIP的核心…...
1.4 Go 数组
一、数组 1、简介 数组是切片的基础 数组是一个固定长度、由相同类型元素组成的集合。在 Go 语言中,数组的长度是类型的一部分,因此 [5]int 和 [10]int 是两种不同的类型。数组的大小在声明时确定,且不可更改。 简单来说,数组…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
2.2.2 ASPICE的需求分析
ASPICE的需求分析是汽车软件开发过程中至关重要的一环,它涉及到对需求进行详细分析、验证和确认,以确保软件产品能够满足客户和用户的需求。在ASPICE中,需求分析的关键步骤包括: 需求细化:将从需求收集阶段获得的高层需…...
Linux——TCP和UDP
一、TCP协议 1.特点 TCP提供的是面向连接、可靠的、字节流服务。 2.编程流程 (1)服务器端的编程流程 ①socket() 方法创建套接字 ②bind()方法指定套接字使用的IP地址和端口。 ③listen()方法用来创建监听队列。 ④accept()方法处理客户端的连接…...

> 一回合的回报乘以该回合梯度除以该轨迹(s,a,r,s,a…)出现概率






