openRv1126 AI算法部署实战之——Tensorflow模型部署实战
在RV1126开发板上部署Tensorflow算法,实时目标检测+RTSP传输。视频演示地址
rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili
一、准备工作
从官网下载tensorflow模型和数据集
手动在线下载:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
TensorFlow预训练模型下载地址:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
往下拉找到ssd_mobilenet_v1_coco并下载
数据集:MSCOCO数据集https://cocodataset.orgObject(论文版本)有90类物体(加上一个背景类就是91类),label_map可参考:https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt


然后将ssd_mobilenet_v1_coco_2018_01_28.tar.gz拷贝至虚拟机
/home/rv1126/ModelConvertSample/original_model目录并解压
二、TensorFlow模型转换为RKNN格式 pb->rknn
转换tensorflow ->RKNN
python convert-tensorflow-to-rknn-pre.py


该脚本读取'./original_model/ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb'
模型文件,使用数据集参考'./dataset/dataset3.txt',
转换后保存为'./rknn_model/ssd_mobilenet_v1_coco.rknn'文件
三、部署ssd_mobilenet_v1_coco.rknn到RV1126开发板上
1.准备工作
首先在开发板执行如下命令,退出出厂测试程序
killall rkmedia_rockx_person_detection
在开发板执行如下命令,挂载nfs根文件系统
busybox mount -t nfs -o nolock,nfsvers=3 192.168.1.108:/home/rv1126 /getnfs/
2.拷贝模型到开发板并运行程序
cd /getnfs/ModelConvertSample/rknn_model
mv /demo/bin/ssd_inception_v2_rv1109_rv1126.rknn /demo/bin/ssd_inception_v2_rv1109_rv1126.rknn_bak
cp ssd_mobilenet_v1_coco.rknn /demo/bin/ssd_inception_v2_rv1109_rv1126.rknn
/demo/bin/openRv1126_ssd_object_recognize
3.VLC查看视频,串口查看打印坐标
然后在电脑上打开VLC播放器,输入如下取流地址。注意IP地址请根据实际修改
rtsp://192.168.1.105/live/main_stream
即可看到实时ssd检测的视频画面。
串口实时打印检测框坐标信息
如需退出请按ctrl+c
4.源码说明
上面运行的openRv1126_yolov5_object_recognize程序源码位于路径:
/home/rv1126/openRv1126-Aidemo/openRv1126_ssd_object_recognize_rtsp

openRv1126_ssd_object_recognize.cpp文件rkmedia_rknn_thread函数中定义了模型路径

ssd.cc定义了数据集路径

相关文章:
openRv1126 AI算法部署实战之——Tensorflow模型部署实战
在RV1126开发板上部署Tensorflow算法,实时目标检测RTSP传输。视频演示地址 rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili 一、准备工作 从官网下载tensorflow模型和数据集 手动在线下载: https://github.com/tensorflow/models/b…...
STM32 TIM定时器配置
TIM简介 TIM(Timer)定时器 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能ÿ…...
51单片机 05 矩阵键盘
嘻嘻,LCD在RC板子上可以勉强装上,会有一点歪。 一、矩阵键盘 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式;采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态。…...
SSRF 漏洞利用 Redis 实战全解析:原理、攻击与防范
目录 前言 SSRF 漏洞深度剖析 Redis:强大的内存数据库 Redis 产生漏洞的原因 SSRF 漏洞利用 Redis 实战步骤 准备环境 下载安装 Redis 配置漏洞环境 启动 Redis 攻击机远程连接 Redis 利用 Redis 写 Webshell 防范措施 前言 在网络安全领域࿰…...
kubernetes学习-配置管理(九)
一、ConfigMap (1)通过指定目录,创建configmap # 创建一个config目录 [rootk8s-master k8s]# mkdir config[rootk8s-master k8s]# cd config/ [rootk8s-master config]# mkdir test [rootk8s-master config]# cd test [rootk8s-master test…...
python 语音识别
目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…...
一文速览DeepSeek-R1的本地部署——可联网、可实现本地知识库问答:包括671B满血版和各个蒸馏版的部署
前言 自从deepseek R1发布之后「详见《一文速览DeepSeek R1:如何通过纯RL训练大模型的推理能力以比肩甚至超越OpenAI o1(含Kimi K1.5的解读)》」,deepseek便爆火 爆火以后便应了“人红是非多”那句话,不但遭受各种大规模攻击,即便…...
[mmdetection]fast-rcnn模型训练自己的数据集的详细教程
本篇博客是由本人亲自调试成功后的学习笔记。使用了mmdetection项目包进行fast-rcnn模型的训练,数据集是自制图像数据。废话不多说,下面进入训练步骤教程。 注:本人使用linux服务器进行展示,Windows环境大差不差。另外࿰…...
1. Kubernetes组成及常用命令
Pods(k8s最小操作单元)ReplicaSet & Label(k8s副本集和标签)Deployments(声明式配置)Services(服务)k8s常用命令Kubernetes(简称K8s)是一个开源的容器编排系统,用于自动化应用程序的部署、扩展和管理。自2014年发布以来,K8s迅速成为容器编排领域的行业标准,被…...
linux下ollama更换模型路径
Linux下更换Ollama模型下载路径指南 在使用Ollama进行AI模型管理时,有时需要根据实际需求更改模型文件的存储路径。本文将详细介绍如何在Linux系统中更改Ollama模型的下载路径。 一、关闭Ollama服务 在更改模型路径之前,需要先停止Ollama服务。…...
本地Ollama部署DeepSeek R1模型接入Word
目录 1.本地部署DeepSeek-R1模型 2.接入Word 3.效果演示 4.问题反馈 上一篇文章办公新利器:DeepSeekWord,让你的工作更高效-CSDN博客https://blog.csdn.net/qq_63708623/article/details/145418457?spm1001.2014.3001.5501https://blog.csdn.net/qq…...
【自学笔记】Git的重点知识点-持续更新
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Git基础知识Git高级操作与概念Git常用命令 总结 Git基础知识 Git简介 Git是一种分布式版本控制系统,用于记录文件内容的改动,便于开发者追踪…...
[EAI-028] Diffusion-VLA,能够进行多模态推理和机器人动作预测的VLA模型
Paper Card 论文标题:Diffusion-VLA: Scaling Robot Foundation Models via Unified Diffusion and Autoregression 论文作者:Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li, Xiaoyu Liu, Yaxin Peng, Chao…...
实现数组的扁平化
文章目录 1 实现数组的扁平化1.1 递归1.2 reduce1.3 扩展运算符1.4 split和toString1.5 flat1.6 正则表达式和JSON 1 实现数组的扁平化 1.1 递归 通过循环递归的方式,遍历数组的每一项,如果该项还是一个数组,那么就继续递归遍历,…...
登录认证(5):过滤器:Filter
统一拦截 上文我们提到(登录认证(4):令牌技术),现在大部分项目都使用JWT令牌来进行会话跟踪,来完成登录功能。有了JWT令牌可以标识用户的登录状态,但是完整的登录逻辑如图所示&…...
pytorch实现门控循环单元 (GRU)
人工智能例子汇总:AI常见的算法和例子-CSDN博客 特性GRULSTM计算效率更快,参数更少相对较慢,参数更多结构复杂度只有两个门(更新门和重置门)三个门(输入门、遗忘门、输出门)处理长时依赖一般适…...
Word List 2
词汇颜色标识解释 词汇表中的生词 词汇表中的词组成的搭配、派生词 例句中的生词 我自己写的生词(用于区分易混淆的词,无颜色标识) 不认识的单词或句式 单词的主要汉语意思 不太理解的句子语法和结构 Word List 2 英文音标中文regi…...
机器学习常用包numpy篇(四)函数运算
目录 前言 一、三角函数 二、双曲函数 三、数值修约 四、 求和、求积与差分 五、 指数与对数 六、算术运算 七、 矩阵与向量运算 八、代数运算 九、 其他数学工具 总结 前言 Python 的原生运算符可实现基础数学运算(加减乘除、取余、取整、幂运算&#…...
CSS in JS
css in js css in js 的核心思想是:用一个 JS 对象来描述样式,而不是 css 样式表。 例如下面的对象就是一个用于描述样式的对象: const styles {backgroundColor: "#f40",color: "#fff",width: "400px",he…...
TCP 丢包恢复策略:代价权衡与优化迷局
网络物理层丢包是一种需要偿还的债务,可以容忍低劣的传输质量,这为 UDP 类服务提供了空间,而对于 TCP 类服务,可以用另外两类代价来支付: 主机端采用轻率的 GBN 策略恢复丢包,节省 CPU 资源,但…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

