当前位置: 首页 > news >正文

crewai框架第三方API使用官方RAG工具(pdf,csv,json)

最近在研究调用官方的工具,但官方文档的说明是在是太少了,后来在一个视频里看到了如何配置,记录一下

以PDF RAG Search工具举例,官方文档对于自定义模型的说明如下:

默认情况下,该工具使用 OpenAI 进行嵌入和总结。要自定义模型,可以使用配置字典,如下所示:

tool = PDFSearchTool(config=dict(llm=dict(provider="ollama", # or google, openai, anthropic, llama2, ...config=dict(model="llama2",# temperature=0.5,# top_p=1,# stream=true,),),embedder=dict(provider="google", # or openai, ollama, ...config=dict(model="models/embedding-001",task_type="retrieval_document",# title="Embeddings",),),)
)

但是这个的前提是使用的官方openai的API,如果要改成第三方API的,配置应该如下:

from crewai_tools import PDFSearchTool# 自定义大模型配置
pdf_tool = PDFSearchTool(config=dict(llm=dict(provider="openai",config=dict(base_url="https://xxxxxxx/v1",api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",model="gpt-4o"),),embedder=dict(provider="openai",config=dict(api_base="https://xxxxxxx/v1",api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",model="text-embedding-3-small"),),)
)

其中,gpt-4otext-embedding-3-small都是购买的第三方API里的模型名称

在这里插入图片描述
如果想用本地模型,配置如下:

from crewai_tools import PDFSearchToolpdf_tool = PDFSearchTool(config=dict(llm=dict(provider="openai",config=dict(# Ollama deepseek-r1:8bbase_url="http://localhost:11434/v1",model="deepseek-r1:8b"),),embedder=dict(provider="openai",config=dict(# 文本嵌入模型 bge-m3api_base="http://localhost:11434/v1",model="bge-m3:latest"),),)
)

下面是一个可以跑通的例子:

from crewai_tools import PDFSearchTool
from dotenv import load_dotenv
import osload_dotenv() # 加载环境变量# 自定义大模型配置
tool = PDFSearchTool(config=dict(llm=dict(provider="openai",config=dict(base_url=os.getenv("OPENAI_API_BASE"),api_key=os.getenv("OPENAI_API_KEY"),model=os.getenv("OPENAI_MODEL_NAME")),),embedder=dict(provider="openai",config=dict(api_base=os.getenv("OPENAI_API_BASE"),api_key=os.getenv("OPENAI_API_KEY"),model="text-embedding-3-small"),),)
)# 运行工具,调用工具解析文件并检索内容
result = tool.run(pdf='../data/deepseek.pdf',# 其他工具使用的参数基本都是search_queryquery="介绍一下deepseek的核心驱技为优势"
)
print("result:",result)

在这里插入图片描述

注:

deepseek.pdf内容如下

DeepSeek:专注人工智能前沿的创新科技企业
一、企业概况
DeepSeek(深度求索)是一一以人人工智能技为核心驱动力的的创新科科技司,成立于 2023年成总部位 中国。司,聚焦 大模科研发、自然语言处理深NLP是、机器学习等前沿领域成致的 通过技为突破推力AI的普惠化应用。DeepSeek人"探)智能本质成赋能人类未来"核使命成专注 核企业和开发者提供高效、可靠的人工智能解决方案成覆盖金融、医疗、教育、智能制造等多个行业。立于人来成司,凭借技为实的和场景化落地能的成迅速立核AI赛道的新锐的量。
二、心驱技为优势
DeepSeek的心驱竞争的源 其自主研发的多模态大模科体系。司,构建了千亿参数规模的预训练模科框架成支持文本、图像、语音等多模态数据的融合分析与生立。在自然语言理解深NLU是领域成其模科在语义推理、长文本处理、多语言交互等任务中达到行业领先水平。此外成DeepSeek创新性地提出了力态知识蒸馏技为成能够在保证模科性能的前提下成显著降低算的消耗成使AI服务更易 部署在边缘设备中。通过持续优化算法架构与训练方法成司,技为团队已申请百余项国内外专利。
三、应用场景与产品生态
DeepSeek的技为已实现多维求商业化落地:
智能客服系统:核企业提供24小时多轮对话服务成理解准确率达95%人上;
行业知识引擎:赋能金融研报自力生立、医疗影像辅助诊断等垂直场景;
开发者平台:开放API接口与工具链成支持快速构建定制化AI应用;
教育解决方案:通过个性化学习路径推荐成提升教育资源配置效率。
司,采用"基础研究+场景度耕"的双轮动力模式成已与200+企业建于合作成日均处理数据量超10亿条。
四、发展愿景与社会责任
DeepSeek始终秉持**"技为向善"**的发展理念成在追索商业价值的同时成积极参与AI伦理治理。司,牵头制定了行业首个《生立式AI内容溯源标准》成通过区块链技为实现内容可追溯成防范技为滥用风险。未来三年成DeepSeek计划投入5亿元用 通用人工智能深AGI是的基础研究成并设于开放实验室支持学为机构的前沿探)。司,目标一通过持续创新成打造安全、可信、易用的人工智能基础设施成助的全球数字化转科。
五、团队与文化基因
创始团队由顶尖AI科学以与资度产业专以组立成立员多来自国际知名高校与科技企业。司,构建了**"极客精神+务实创新"**的文化体系成推行扁平化管理与跨学科协作机制成鼓励技为人才在宽松环境中实现突破。通过"星火计划"人才培养项目成DeepSeek已建于起覆盖算法、工程、产品等多领域的千人团队成研发人员占比超过80%成持续核行业发展输送高端人才。

.env文件内容,需要替换成自己的API配置

# ChatGPT
OPENAI_API_BASE="https://xxxxxxxxxxxxx/v1"
OPENAI_API_KEY="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
OPENAI_MODEL_NAME="gpt-4o"

相关文章:

crewai框架第三方API使用官方RAG工具(pdf,csv,json)

最近在研究调用官方的工具,但官方文档的说明是在是太少了,后来在一个视频里看到了如何配置,记录一下 以PDF RAG Search工具举例,官方文档对于自定义模型的说明如下: 默认情况下,该工具使用 OpenAI 进行嵌…...

脉冲信号傅里叶变换与频域分析:从计算到理解

摘要 本文聚焦于脉冲信号的傅里叶变换,详细推导了矩形脉冲信号和单边指数信号的傅里叶变换过程,深入解释了傅里叶变换结果 F ( ω ) F(\omega) F(ω) 的内涵,包括其定义、物理意义、包含的信息以及在实际应用中的重要性。旨在帮助读者全面掌…...

6.【BUUCTF】[SUCTF 2019]CheckIn

打开题目页面如下 看样子是一道有关文件上传的题 上传一句话木马 显示:非法后缀! 看来.php后缀被过滤了 上传一张带有木马的照片 在文件地址处输入cmd 输入以下代码执行 copy 1.jpg/b4.php/a 5.jpg 最后一行有一句话木马 上传带有木马的图片 但其实…...

基于springboot的体质测试数据分析及可视化设计

作者:学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等 文末获取“源码数据库万字文档PPT”,支持远程部署调试、运行安装。 项目包含: 完整源码数据库功能演示视频万字文档PPT 项目编码&#xff1…...

孟加拉国_行政边界省市边界arcgis数据shp格式wgs84坐标

这篇内容将深入探讨孟加拉国的行政边界省市边界数据,该数据是以arcgis的shp格式提供的,并采用WGS84坐标系统。ArcGIS是一款广泛应用于地理信息系统(GIS)的专业软件,它允许用户处理、分析和展示地理空间数据。在GIS领域…...

可视化相机pose colmap形式的相机内参外参

目录 内参外参转换 可视化相机pose colmap形式的相机内参外参 内参外参转换 def visualize_cameras(cameras, images):fig plt.figure()ax fig.add_subplot(111, projection3d)for image_id, image_data in images.items():qvec image_data[qvec]tvec image_data[tvec]#…...

数据结构 树2

文章目录 前言 一,二叉搜索树的高度 二,广度优先VS深度优先 三,广度优先的代码实现 四,深度优先代码实现 五,判断是否为二叉搜索树 六,删除一个节点 七,二叉收索树的中序后续节点 总结 …...

GB/T 44721-2024 与 L3 自动驾驶:自动驾驶新时代的基石与指引

1.前言 在智能网联汽车飞速发展的当下,自动驾驶技术成为了行业变革的核心驱动力。从最初的辅助驾驶功能,到如今不断迈向高度自动化的征程,每一步都凝聚着技术的创新与突破。而在这一进程中,标准的制定与完善对于自动驾驶技术的规…...

AURIX TC275学习笔记3 官方例程 (UART LED WDT)

文章目录 参考资料1. ASCLIN_UART_12. GPIO_LED_Button_13. WDT (Watch Dog Timer) 参考资料 AURIX TC275学习笔记1 资料收集Getting Started with AURIX™ Development Studio 官方帮助文档happy hacking for TC275! 硬件平台使用AURIX™ TC275 Lite 套件,按照参…...

Vim的基础命令

移动光标 H(左) J(上) K(下) L(右) $ 表示移动到光标所在行的行尾, ^ 表示移动到光标所在行的行首的第一个非空白字符。 0 表示移动到光标所在行的行首。 W 光标向前跳转一个单词 w光标向前跳转一个单词 B光标向后跳转一个单词 b光标向后跳转一个单词 G 移动光标到…...

Linux的简单使用和部署4asszaaa0

一.部署 1 环境搭建方式主要有四种: 1. 直接安装在物理机上.但是Linux桌面使用起来非常不友好.所以不建议.[不推荐]. 2. 使用虚拟机软件,将Linux搭建在虚拟机上.但是由于当前的虚拟机软件(如VMWare之类的)存在⼀些bug,会导致环境上出现各种莫名其妙的问题比较折腾.[非常不推荐…...

Linux 的 sysfs 伪文件系统介绍【用户可以通过文件操作与内核交互(如调用内核函数),而无需编写内核代码】

1. 什么是 sysfs伪文件系统? sysfs 是 Linux 内核提供的 伪文件系统,用于向用户空间暴露内核对象的信息和控制接口。它是 procfs 的补充,主要用于管理 设备、驱动、内核子系统 等信息,使用户可以通过文件操作(如用户空…...

每日一题洛谷P5721 【深基4.例6】数字直角三角形c++

#include<iostream> using namespace std; int main() {int n;cin >> n;int t 1;for (int i 0; i < n; i) {for (int j 0; j < n - i; j) {printf("%02d",t);t;}cout << endl;}return 0; }...

计算机网络笔记再战——理解几个经典的协议1

目录 前言 从协议是什么出发 关于TCP/IP协议体系 几个传输方式的分类 地址 网卡 中继器&#xff08;Repeater&#xff09; 网桥&#xff08;Bridge&#xff09; 路由器&#xff08;Router&#xff09; 网关 前言 笔者最近正在整理&#xff08;笔者开的坑不少&#xf…...

ElasticSearch学习笔记-解析JSON格式的内容

如果需要屏蔽其他项目对Elasticsearch的直接访问操作&#xff0c;统一由一个入口访问操作Elasticsearch&#xff0c;可以考虑直接传入JSON格式语句解析执行。 相关依赖包 <properties><elasticsearch.version>7.9.3</elasticsearch.version><elasticsea…...

浅谈密码相关原理及代码实现

本代码仅供学习、研究、教育或合法用途。开发者明确声明其无意将该代码用于任何违法、犯罪或违反道德规范的行为。任何个人或组织在使用本代码时&#xff0c;需自行确保其行为符合所在国家或地区的法律法规。 开发者对任何因直接或间接使用该代码而导致的法律责任、经济损失或…...

Spring Boot常用注解深度解析:从入门到精通

今天&#xff0c;这篇文章带你将深入理解Spring Boot中30常用注解&#xff0c;通过代码示例和关系图&#xff0c;帮助你彻底掌握Spring核心注解的使用场景和内在联系。 一、启动类与核心注解 1.1 SpringBootApplication 组合注解&#xff1a; SpringBootApplication Confi…...

can not add outlook new accounts on the outlook

link : Reference url...

私有化部署 DeepSeek + Dify,构建你的专属私人 AI 助手

私有化部署 DeepSeek Dify&#xff0c;构建你的专属私人 AI 助手 概述 DeepSeek 是一款开创性的开源大语言模型&#xff0c;凭借其先进的算法架构和反思链能力&#xff0c;为 AI 对话交互带来了革新性的体验。通过私有化部署&#xff0c;你可以充分掌控数据安全和使用安全。…...

【Elasticsearch】post_filter

post_filter是 Elasticsearch 中的一种后置过滤机制&#xff0c;用于在查询执行完成后对结果进行过滤。以下是关于post_filter的详细介绍&#xff1a; 工作原理 • 查询后过滤&#xff1a;post_filter在查询执行完毕后对返回的文档集进行过滤。这意味着所有与查询匹配的文档都…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...