Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API
目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。
Python库sider_ai_api 提供了调用这些大模型的一个完整解决方案,
使得开发者能调用 sider.ai 的API,实现大模型的访问。
Sider是谷歌浏览器和Edge的插件,能调用ChatGPT、Claude、Gemini、llama,乃至o1以及DeepSeek。

本文介绍访问Sider API的Python 库,sider_ai_api的用法,目前支持聊天和文字识别功能。
sider_ai_api库源地址:sider-ai-api · GitHub
目录
- 一、安装
- 二、代码
- 三、用法详解
- `Session` 类
- 构造函数:
- 主要方法:
- `chat(prompt, model="gpt-4o-mini")`
- `ocr(filename, model="gemini-2.0-flash")`
- 属性:
- 其他有用的常量
- 四、关于 token 和 cookie
- 五、总结
一、安装
pip install requests
pip install sider-ai-api
二、代码
from sider_ai_api import Session# 设置 token 和 cookie,注意token不需要以Bearer开头
token = "eyJhbGciOiJIUzI..."
cookie = "key1=value1;key2=value2"# 初始化 Session
session = Session(token=token, cookie=cookie)# 调用不同模型的聊天功能
print("".join(session.chat("Hello, ChatGPT!", "gpt-4o-mini")))
print("".join(session.chat("Hello, Claude!", "claude-3.5-haiku")))
print("".join(session.chat("Hello, Gemini!", "gemini-2.0-flash")))
print("".join(session.chat("Hello, DeepSeek!", "deepseek-chat"))) # DeepSeek-v3
print("".join(session.chat("Hello, o1!", "o1")))# 调用 OCR 功能
print("".join(session.ocr("path/to/image.jpg")))# 查看剩余调用次数
print(f"还剩 {session.remain}/{session.total} 次 API 调用。")
三、用法详解
sider_ai_api 库提供了 Session 类,用于与 Sider API 交互,支持聊天和 OCR 功能。
Session 类
Session 类用于管理单个聊天上下文,一个Session类包含一个上下文,并提供聊天和OCR文字识别的功能。
构造函数:
def __init__(self,token=None,context_id="",cookie=None):
- 参数:
token(str): 可选,身份验证令牌,如"eyJhbGciOiJIUzI...",注意不需要加Bearer这个开头。如果为None,则自动读取DEFAULT_TOKEN_FILE(默认是_token.json) 中的token和cookie。context_id(str): 可选,对话上下文的 ID,如"C0M.......EB",空字符串表示开始新对话。默认为空字符串。cookie(str): 可选,身份验证所需的 cookie 字符串,如"key1=value1;key2=value2"。如果不提供,默认使用COOKIE_TEMPLATE常量中的模板。
主要方法:
chat(prompt, model="gpt-4o-mini")
用提示词与 AI 对话,返回一个字符串生成器,包含AI的响应结果。
-
参数:
prompt(str): 用户提示词。model(str): 使用的 AI 模型,默认为"gpt-4o-mini"。
-
返回: 一个字符串生成器,逐步返回 AI 的响应,可以使用
"".join()拼接。
ocr(filename, model="gemini-2.0-flash")
对图像文件执行 OCR 识别,返回结果的字符串生成器。
-
参数:
filename(str): 图像文件的路径。model(str): 使用的 OCR 模型,默认为"gemini-2.0-flash"。完整的模型列表可以在MODELS和ADVANCED_MODELS常量中找到。
-
返回: 一个字符串生成器,逐步返回 AI 的响应。
属性:
context_id: 对话上下文id,如果为""则表示开始新对话。对话上下文会由服务器端保存。total: API的总调用次数,为整数或者None。remain: API的剩余调用次数,为整数或者None。
其他有用的常量
MODELS和ADVANCED_MODELS:两个列表,分别包含sider的基础模型和高级模型用在API中的标识符,如"gpt-4o-mini", "claude-3-haiku"等。
四、关于 token 和 cookie
Session 类的使用需要提供 token,可以通过以下方式获取:
- 打开浏览器,访问 sider.ai。
- 在浏览器的开发者工具中,找到
token和cookie信息。- 对于 Edge 浏览器,可以在 edge://settings/cookies/detail?site=sider.ai 中查看。
- 如果只有
token而没有完整的cookie信息(如CloudFront-Signature等),聊天功能仍然可以正常使用,但 OCR 功能可能会因 Cloudflare 验证失败而报错。因此,建议提供完整的cookie。
五、总结
sider_ai_api 是一个强大的工具,帮助国内用户轻松访问 ChatGPT、Claude、Gemini 等国外大模型。通过简单的安装和配置,你可以快速集成这些模型的聊天和 OCR 功能到自己的项目中。
相关文章:
Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API
目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。 Python库sider_ai_api 提供了调用这些大模型的一个完整解决方案, 使得开发者能调用 sider.ai 的API,实现大模型的访问。 Sider是谷歌浏览器和Edge的插件,能调用ChatGPT、Clau…...
DeepSeek、哪吒和数据库:厚积薄发的力量
以下有部分来源于AI,毕竟我认为AI还不能替代,他只能是辅助 快速迭代是应用程序不是工程 在这个追求快速迭代、小步快跑的时代,我们似乎总是被 “快” 的节奏裹挟着前进。但当我们静下心来,审视 DeepSeek 的发展、饺子导演创作哪吒…...
DDD - 微服务架构模型_领域驱动设计(DDD)分层架构 vs 整洁架构(洋葱架构) vs 六边形架构(端口-适配器架构)
文章目录 引言1. 概述2. 领域驱动设计(DDD)分层架构模型2.1 DDD的核心概念2.2 DDD架构分层解析 3. 整洁架构:洋葱架构与依赖倒置3.1 整洁架构的核心思想3.2 整洁架构的层次结构 4. 六边形架构:解耦核心业务与外部系统4.1 六边形架…...
第 1 天:UE5 C++ 开发环境搭建,全流程指南
🎯 目标:搭建 Unreal Engine 5(UE5)C 开发环境,配置 Visual Studio 并成功运行 C 代码! 1️⃣ Unreal Engine 5 安装 🔹 下载与安装 Unreal Engine 5 步骤: 注册并安装 Epic Game…...
【华为OD-E卷 - 109 磁盘容量排序 100分(python、java、c++、js、c)】
【华为OD-E卷 - 磁盘容量排序 100分(python、java、c、js、c)】 题目 磁盘的容量单位常用的有M,G,T这三个等级, 它们之间的换算关系为1T 1024G,1G 1024M, 现在给定n块磁盘的容量,…...
【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
编写Python代码实现词频统计(python+hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 本机PyCharm连接CentOS虚拟机 在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了…...
5-Scene层级关系
Fiber里有个scene是只读属性,能从fiber中获取它属于哪个场景,scene实体中又声明了fiber,fiber与scene是互相引用的关系。 scene层级关系 举例 在unity.core中的EntityHelper中,可以通过entity获取对应的scene root fiber等属性…...
JVM执行流程与架构(对应不同版本JDK)
直接上图(对应JDK8以及以后的HotSpot) 这里主要区分说明一下 方法区于 字符串常量池 的位置更迭: 方法区 JDK7 以及之前的版本将方法区存放在堆区域中的 永久代空间,堆的大小由虚拟机参数来控制。 JDK8 以及之后的版本将方法…...
本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果 为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。 📌 问题示例: 笼子里有鸡和兔,总共有 35 只头,94 只…...
请求响应(接上篇)
请求 日期参数 需要在前面加上一个注解DateTimeFormat来接收传入的参数的值 Json参数 JSON参数:JSON数据键名与形参对象属性名相同,定义POJO类型形参即可接收参数,需要使用 RequestBody 标识 通过RequestBody将JSON格式的数据封装到实体类…...
数组排序算法
数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据,通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据,教学用途InsertO(n)…...
防火墙的安全策略
1.VLAN 2属于办公区;VLAN 3属于生产区,创建时间段 [FW]ip address-set BG type object [FW-object-address-set-BG]address 192.168.1.0 mask 25 [FW]ip address-set SC type object [FW-object-address-set-SC]address 192.168.1.129 mask 25 [FW]ip address-se…...
2025Java面试题超详细整理《微服务篇》
什么是微服务架构? 微服务框架是将某个应用程序开发划分为许多独立小型服务,实现敏捷开发和部署,这些服务一般围绕业务规则进行构建,可以用不同的语言开发,使用不同的数据存储,最终使得每个服务运行在自己…...
中位数定理:小试牛刀> _ <2025牛客寒假1
给定数轴上的n个点,找出一个到它们的距离之和尽量小的点(即使我们可以选择不是这些点里的点,我们还是选择中位数的那个点最优) 结论:这些点的中位数就是目标点。可以自己枚举推导(很好想) (对于 点的数量为…...
(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调
Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D),旨在赋予预训练的大语言模型(…...
如何开发一个大语言模型,开发流程及需要的专业知识
开发大型语言模型(LLM)是一个复杂且资源密集的过程,涉及多个阶段和跨学科知识。以下是详细的开发流程和所需专业知识指南: 一、开发流程 1. 需求分析与规划 目标定义:明确模型用途(如对话、翻译、代码生成…...
【数据采集】基于Selenium采集豆瓣电影Top250的详细数据
基于Selenium采集豆瓣电影Top250的详细数据 Selenium官网:https://www.selenium.dev/blog/ 豆瓣电影Top250官网:https://movie.douban.com/top250 写在前面 实验目标:基于Selenium框架采集豆瓣电影Top250的详细数据。 电脑系统:Windows 使用软件:PyCharm、Navicat 技术需求…...
neo4j-在Linux中安装neo4j
目录 切换jdk 安装neo4j 配置neo4j以便其他电脑可以访问 切换jdk 因为我安装的jdk是1.8版本的,而我安装的neo4j版本为5.15,Neo4j Community 5.15.0 不支持 Java 1.8,它要求 Java 17 或更高版本。 所以我需要升级Java到17 安装 OpenJDK 17 sudo yu…...
多无人机--强化学习
这个是我对于我的大创项目的构思,随着时间逐渐更新 项目概要 我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目,但是在由于时间原因,并未考虑强化学习,所以现在通过大创项目来弥补遗憾 我们项目分为三部分,分为虚…...
UE制作2d游戏
2d免费资产: Free 2D Game Assets - CraftPix.net 需要用到PaperZD插件 官网下载后启用即可 导入png素材 然后全选 - 创建Sprite 创建 人物基类 设置弹簧臂和相机 弹簧臂设置成旋转-90 , 取消碰撞测试 设置子类Sprite 拖到场景中 绑定设置输入映射,让角色移动跳跃 神似卡拉比…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
