DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具
🌈 个人主页:Zfox_
🔥 系列专栏:Linux
目录
- 一:🔥 Ollama
- 🦋 下载 Ollama
- 🦋 选择模型
- 🦋 运行模型
- 🦋 使用 && 测试
- 二:🔥 Chatbox
- 🦋 创建你的专属 GPTs
- 三:🔥 共勉
一:🔥 Ollama
🦋 下载 Ollama
🧑💻
https://ollama.com/
- Ollama 是一个用于管理和部署机器学习模型的工具。
- 目前 Ollama 支持 macOS、Linux、Windows,选择相应的系统下载即可。

🦁 💻 安装后运行软件,在任务栏确认在右上角出现这只 小羊驼🦙 图标

🦋 选择模型
🧑💻 点击Search models 搜索框,第一条就是 deepseek-r1 模型。

这里我们发现了多个不同大小的模型,文件大小适配不同的设备
DeepSeek R1提供多个版本,参数量越大,模型通常越强大,但也需要更多的计算资源。
比如1.5B代表有15亿个参数。

🎁 借助网上大佬们整理的表格供大家参考,来确认你的电脑可以运行哪个模型:

🦋 运行模型
运行模型很简单:确定模型后,复制这条指令到终端里

💻 当进度条跑满时,恭喜🎉,你的电脑已经拥有了顶级的推理能力
🦋 使用 && 测试
📚 这里我已经提前下好了,使用 ollama 提供的终端指令 ollama list 可以看我们电脑上已经部署了哪些模型,然后使用 ollama run 对应的模型 就可以了

输入 /bye即可退出

📚 ollama 命令查看
admin@admindeMacBook-Pro ~ % ollama
Usage:ollama [flags]ollama [command]Available Commands:serve Start ollamacreate Create a model from a Modelfileshow Show information for a modelrun Run a modelstop Stop a running modelpull Pull a model from a registrypush Push a model to a registrylist List modelsps List running modelscp Copy a modelrm Remove a modelhelp Help about any commandFlags:-h, --help help for ollama-v, --version Show version informationUse "ollama [command] --help" for more information about a command.
🧑💻 虽然这里终端已经可以使用了,但是还是不太方便。
- 这里就有人要问博主了,你推荐的模型确实挺不错的,但是还是太吃操作了,有没有更加方便的使用方式呢?
- 有的兄弟有的,像更方便的使用方式那么就是
Chatbox
二:🔥 Chatbox
🧑💻 浏览器搜索 Chatbox 并下载客户端或者网页版都可以
- 设置语言为中文并保存

- 点击设置选择模型为 OLLAMA API

为了确保可以连接到本地服务,大家按照提供的教程设置一下,不同的操作系统设置不太一样,然后选择 R1模型并保存
- 连接到本地服务教程跳转

🦁 现在你就可以在 浏览器/客户端 上流畅的使用 R1 了。
🦋 创建你的专属 GPTs
🧑💻 点击我的搭档,创建搭档,给ai角色设定人格,你也可以选择现有的搭档,一个资深的行业专家就出现了。

三:🔥 共勉
😋 以上就是我对 DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具 的理解,觉得这篇博客对你有帮助的,可以点赞收藏关注支持一波~ 😉

相关文章:
DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具
🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 Ollama 🦋 下载 Ollama🦋 选择模型🦋 运行模型🦋 使用 && 测试 二:🔥 Chat…...
应急场景中的数据融合与对齐
1. 概述 在应急管理中,快速、准确地掌握现场状况、实时监控灾情并进行决策至关重要。各类数据(如卫星影像、无人机图像、激光雷达点云、地理信息系统(GIS)数据、传感器数据、社交媒体信息、移动终端数据等)具有来源广泛、格式多样、时空特性不同等特点。如何将这些异构数…...
手机上运行AI大模型(Deepseek等)
最近deepseek的大火,让大家掀起新一波的本地部署运行大模型的热潮,特别是deepseek有蒸馏的小参数量版本,电脑上就相当方便了,直接ollamaopen-webui这种类似的组合就可以轻松地实现,只要硬件,如显存…...
Mellanox网卡信息查看
1、查看Mellanox网卡的SN(序列号)和PN mstvpd 04:00.0或者lspci -s 04:00.0 -vvv来自https://enterprise-support.nvidia.com/s/article/MLNX2-117-2532kn 2、查看Mellanox网卡驱动、固件版本 ethtool -i ens6np0...
【漫画机器学习】083.安斯库姆四重奏(Anscombe‘s quartet)
安斯库姆四重奏(Anscombes Quartet) 1. 什么是安斯库姆四重奏? 安斯库姆四重奏(Anscombes Quartet)是一组由统计学家弗朗西斯安斯库姆(Francis Anscombe) 在 1973 年 提出的 四组数据集。它们…...
TCP | RFC793
注:本文为 “ RFC793” 相关文章合辑。 RFC793-TCP 中文翻译 编码那些事儿已于 2022-07-14 16:02:16 修改 简介 翻译自: RFC 793 - Transmission Control Protocol https://datatracker.ietf.org/doc/html/rfc793 TCP 是一个高可靠的主机到主机之间…...
2025蓝桥杯JAVA编程题练习Day2
1.大衣构造字符串 问题描述 已知对于一个由小写字母构成的字符串,每次操作可以选择一个索引,将该索引处的字符用三个相同的字符副本替换。 现有一长度为 NN 的字符串 UU,请帮助大衣构造一个最小长度的字符串 SS,使得经过任意次…...
《解锁GANs黑科技:打造影视游戏的逼真3D模型》
在游戏与影视制作领域,逼真的3D模型是构建沉浸式虚拟世界的关键要素。从游戏中栩栩如生的角色形象,到影视里震撼人心的宏大场景,高品质3D模型的重要性不言而喻。随着人工智能技术的飞速发展,生成对抗网络(GANs…...
es match 可查 而 term 查不到 问题分析
es 匹配逻辑 根本:es 的匹配是基于token 的。检索的query和目标字段在token 层级上有交集才能检索成功。对同样的文本,使用不同的分词器,所得token 不同。es 默认的analyzer(分词器)是standard模式,即按字切分。 基本上…...
【OpenCV实战】基于 OpenCV 的多尺度与模板匹配目标跟踪设计与实现
文章目录 基于 OpenCV 的模板匹配目标跟踪设计与实现1. 摘要2. 系统概述3. 系统原理3.1 模板匹配的基本原理3.2 多尺度匹配 4. 逻辑流程4.1 系统初始化4.2 主循环4.3 逻辑流程图 5. 关键代码解析5.1 鼠标回调函数5.2 多尺度模板匹配 6. 系统优势与不足6.1 优势6.2 不足 7. 总结…...
将有序数组转换为二叉搜索树(力扣108)
这道题需要在递归的同时使用双指针。先找到一个区间的中间值,当作子树的父节点,再递归该中间值的左区间和右区间,用于生成该父节点的左子树和右子树。这就是此题的递归逻辑。而双指针就体现在每一层递归都要使用左指针和右指针来找到中间值。…...
开放式TCP/IP通信
一、1200和1200之间的开放式TCP/IP通讯 第一步:组态1214CPU,勾选时钟存储器 第二步:防护与安全里面连接机制勾选允许PUT/GET访问 第三步:添加PLC 第四步:点击网络试图,选中网口,把两个PLC连接起…...
S4 HANA (递延所得税传输)Deferred Tax Transfer - S_AC0_52000644
本文主要介绍在S4 HANA OP中S4 HANA (递延所得税传输)Deferred Tax Transfer - S_AC0_52000644的后台配置及前台操作。具体请参照如下内容: 目录 Deferred Tax Transfer - S_AC0_52000644 1. 后台配置 1.1 Business Transaction Events激活- FIBF 2. 前台操作 …...
如何从0开始做自动化测试?
自动化测试是使用软件工具在应用程序上自动运行测试的过程,无需任何人为干预。这可以通过减少手动测试的需要来保存时间并提高软件开发过程的效率。由于人为错误或不一致性,手动测试可能容易出错,这可能导致错误未被检测到。自动化测试通过…...
DeepSeek服务器繁忙问题的原因分析与解决方案
一、引言 随着人工智能技术的飞速发展,DeepSeek 等语言模型在众多领域得到了广泛应用。然而,在春节这段时间的使用过程中,用户常常遭遇服务器繁忙的问题,这不仅影响了用户的使用体验,也在一定程度上限制了模型的推广和…...
C#,入门教程(10)——常量、变量与命名规则的基础知识
上一篇: C#,入门教程(09)——运算符的基础知识https://blog.csdn.net/beijinghorn/article/details/123908269 C#用于保存计算数据的元素,称为“变量”。 其中一般不改变初值的变量,称为常变量,简称“常量”。 无论…...
宏观经济:信贷紧缩与信贷宽松、通货膨胀与通货紧缩以及经济循环的四个周期
目录 信贷紧缩与信贷宽松信贷紧缩信贷宽松信贷政策对经济影响当前政策环境 通货膨胀与通货紧缩通货膨胀通货紧缩通货膨胀与通货紧缩对比 经济循环的四个周期繁荣阶段衰退阶段萧条阶段复苏阶段经济周期理论解释经济周期类型 信贷紧缩与信贷宽松 信贷紧缩 定义:金融…...
分层解耦.
三层架构 controller:控制层,接收前端发送的请求,对请求进行处理,并响应数据 service:业务逻辑层,处理具体的业务逻辑 dao:数据访问层(Data Access Object)(持久层),负责数据访问操作,包括数据的增、删、改…...
JAVA异步的TCP 通讯-客户端
一、客户端代码示例 import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.AsynchronousSocketChannel; import java.nio.channels.CompletionHandler; import java.util.concurrent.ExecutorService; impo…...
MySQL的存储引擎对比(InnoDB和MyISAM)
InnoDB 特点: 事务支持:InnoDB 是 MySQL 默认的事务型存储引擎,支持 ACID(原子性、一致性、隔离性、持久性)事务。行级锁定:支持行级锁,能够并发执行查询和更新操作,提升多用户环境…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
