Meta AI 最近推出了一款全新的机器学习框架ParetoQ,专门用于大型语言模型的4-bit 以下量化
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/
Meta AI 最近推出了一款全新的机器学习框架——ParetoQ,专门用于大型语言模型的4-bit 以下量化。随着深度学习模型的不断膨胀,模型压缩技术的重要性日益凸显,而低比特量化成为一种既能缩小模型体积,又能保持准确度的关键方法。然而,围绕量化比特数的争论一直没有定论,一些研究认为4-bit 量化是最优解,而另一些研究则认为1.58-bit 模型同样能取得类似表现。由于缺乏统一的评估框架,不同研究得出的结论往往矛盾,导致低比特精度量化的规模化规律难以建立。
量化的难点在于如何在计算效率与模型准确度之间找到最佳平衡。不同方法各有优缺点,例如后训练量化(PTQ)虽然可以直接在训练好的模型上进行量化,部署方便,但低比特时准确率损失较大;量化感知训练(QAT)则是在训练过程中就引入量化,使模型能够更好地适应低比特表示。此外,还有可学习量化和混合精度策略等方法尝试进一步优化模型压缩效果。但由于评估标准不统一,很难直观比较不同量化方法的优劣。
为了解决这一问题,Meta AI 研究团队推出了ParetoQ,它作为一个标准化框架,支持1-bit、1.58-bit、2-bit、3-bit 和 4-bit 量化的系统性评估。相比以往各自为政的量化研究,ParetoQ 通过优化训练方案和比特特定量化函数,提供了一种更具一致性的比较方式。
ParetoQ 如何优化低比特量化?
该框架采用优化版 QAT 训练策略,在保证模型压缩效果的同时,将准确率损失降到最低。研究发现,当模型精度降至2-bit 以下时,会发生显著的表征偏移,而3-bit 及以上的模型则仍然保持与原始预训练分布的相似性。为此,ParetoQ 针对不同比特宽度优化量化网格、调整训练方式,并提供比特特定的学习策略。
实验结果显示,ParetoQ 在性能上远超现有的量化方法。例如,研究团队基于 ParetoQ 训练的600M 参数三进制(ternary)模型,准确率超越了之前最强的 3B 参数三进制模型,但参数量仅为其五分之一。此外,2-bit 量化模型在相同体积下的准确率相比 4-bit 模型提升1.8 个百分点,证明了2-bit 量化是 4-bit 量化的有效替代方案。
不仅如此,ParetoQ 还带来了更高效的硬件适配性。优化后的2-bit CPU 内核在计算速度和内存效率上都比 4-bit 量化更优,使低比特量化在实际部署中更加可行。实验也表明,相比 1-bit 和 4-bit 量化,2-bit、3-bit 及 ternary 量化模型在准确率和模型大小之间达到了更优平衡,进一步强化了4-bit 以下量化策略的价值。
未来展望
这项研究奠定了大型语言模型低比特量化的坚实基础。通过引入结构化框架,ParetoQ 有效解决了准确率权衡与比特宽度优化问题。研究结果表明,虽然极端低比特量化(如 1-bit)可行,但目前来看,2-bit 和 3-bit 量化仍是最佳选择,能够在性能和效率之间达到理想平衡。未来,随着硬件对低比特计算的支持不断增强,这些方法将进一步提升大规模机器学习模型在受限资源环境下的部署可行性。
相关文章:

Meta AI 最近推出了一款全新的机器学习框架ParetoQ,专门用于大型语言模型的4-bit 以下量化
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

操作系统—进程与线程
补充知识 PSW程序状态字寄存器PC程序计数器:存放下一条指令的地址IR指令寄存器:存放当前正在执行的指令通用寄存器:存放其他一些必要信息 进程 进程:进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位…...
团队:前端开发工期参考 / 防止工期不足、过足、工期打架
一、前端开发工期参考 序号功能 / 模块 / 页面 / 描述pc端(数值为比例)小程序端(数值为比例)1简单页面 / 常规页面1:12复杂页面(功能复杂 / 逻辑复杂)1:1.5 / 1:2 / …...
APL语言的云计算
APL语言的云计算:一种灵活而高效的编程方式 引言 随着信息技术的迅猛发展,云计算已经成为现代计算的重要组成部分。云计算不仅带来了计算资源的高效利用,也引发了新一轮的技术革命。在这个背景下,APL(A Programming …...

idea启动报错# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00007ffccf76e433
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc0x00007ffccf76e433, pid17288, tid6696 # # JRE version: (11.0.248) (build ) # Java VM: OpenJDK 64-Bit Server VM (11.0.248-LTS, mixed mode, sharing, tiered, compressed oops, g1 gc, windows-amd64) 不知道为什么…...

C++拷贝构造函数与运算符重载应该注意的一个问题?
看下面的例子: class TestClass { public:char* _pdata;size_t _nLength;public:TestClass(const TestClass& other) {_nLength other._nLength;_pdata new char[_nLength];memcpy((void*)_pdata,other._pdata, _nLength 1);}TestClass(const char* pstr) {…...
[7] 游戏机项目说明
[7] 游戏机项目说明 在这节课中,我们将学习如何基于FreeRTOS开发一个简单的游戏项目。我们会使用一个开源项目nwatch,它是一个基于STM32的开源手表,包含了三个游戏。我们的目标是将这个游戏移植到我们的开发板上,并逐步使用FreeR…...
“深入浅出”系列之C++:(20)C++17
C17的新拓展 并行算法: C17引入了并行STL算法,允许使用多个线程并行处理元素,提高了在多核系统上的性能。 示例代码:std::sort(std::execution::par, v.begin(), v.end()); 类模板参数推导(CTAD)&#…...
.net一些知识点5
1.dot Net带out的参数如何使用 string name;//假设这个参数带out TestMethod(1,out name);//一定要有out 方法体中,一定要有out参数的赋值,并且能输出 2.参数的传递方式有哪些 a.值传递 b.引用传递 ref c.输出传递 out 3.设计模式知道哪些 3.us…...

(七)QT——消息事件机制&绘图&文件
目录 前言 消息事件机制 (Event System) 绘图 (Graphics & Drawing) 绘图设备 Qt 提供的主要绘图设备 Qt 主要绘图设备的特点 各个绘图设备的详细介绍 文件处理 (File Handling) 总结 前言 QT 是一个非常强大的图形用户界面(GUI)开发框架&…...
【虚幻引擎UE】AOI算法介绍与实现案例
【虚幻引擎UE】AOI算法介绍与实现 一、AOI算法介绍AOI算法的典型应用场景二、AOI相关算法1. 边界框法(Bounding Box Method)2. 动态AOI算法3. 布尔运算(Boolean Operations)4. 四叉树(Quadtree)5. R树(R-Tree)6. 圆形AOI算法7. 网格分割(Grid Partitioning)8. 多边形…...

python学opencv|读取图像(六十)先后使用cv2.erode()函数和cv2.dilate()函数实现图像处理
【1】引言 前序学习进程中,先后了解了使用cv2.erode()函数和cv2.dilate()函数实现图像腐蚀和膨胀处理的效果,相关文章链接为: python学opencv|读取图像(五十八)使用cv2.erode()函数实现图像腐蚀处理-CSDN博客 pytho…...

AI能帮谷歌SEO做什么?
现在没用过AI写内容的人,应该不多了,用ChatGPT写文章,用MidJourney画图,用各种工具做调研,AI已经成为SEO玩家的“标配”。但AI到底能帮SEO做到什么?省钱?省时间?还是更重要的东西&am…...

SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现 目录 SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优…...

【机器学习】数据预处理之数据归一化
数据预处理之数据归一化 一、摘要二、数据归一化概念三、数据归一化实现方法3.1 最值归一化方法3.2 均值方差归一化方法 一、摘要 本文主要讲述了数据归一化(Feature Scaling)的重要性及其方法。首先通过肿瘤大小和发现时间的例子,说明了不同…...

【专题】2024-2025人工智能代理深度剖析:GenAI 前沿、LangChain 现状及演进影响与发展趋势报告汇总PDF洞察(附原数据表)
原文链接:https://tecdat.cn/?p39630 在科技飞速发展的当下,人工智能代理正经历着深刻的变革,其能力演变已然成为重塑各行业格局的关键力量。从早期简单的规则执行,到如今复杂的自主决策与多智能体协作,人工智能代理…...
非递减子序列(力扣491)
这道题的难点依旧是去重,但是与之前做过的子集类问题的区别就是,这里是求子序列,意味着我们不能先给数组中的元素排序。因为子序列中的元素的相对位置跟原数组中的相对位置是一样的,如果我们改变数组中元素的顺序,子序…...
网站快速收录策略:提升爬虫抓取效率
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/102.html 要实现网站快速收录并提升爬虫抓取效率,可以从以下几个方面入手: 一、优化网站结构与内容 清晰的网站结构 设计简洁明了的网站导航,确保爬虫…...

系统思考—自我超越
“人们往往认为是个人的能力限制了他们,但事实上,是组织的结构和惯性思维限制了他们的潜力。”—彼得圣吉 最近和一家行业隐形冠军交流,他们已经是领域第一,老板却依然要求:核心团队都要自我超越,攻坚克难…...

苍穹外卖-菜品分页查询
3. 菜品分页查询 3.1 需求分析和设计 3.1.1 产品原型 系统中的菜品数据很多的时候,如果在一个页面中全部展示出来会显得比较乱,不便于查看,所以一般的系统中都会以分页的方式来展示列表数据。 菜品分页原型: 在菜品列表展示时…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...