SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
目录
- SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优化学习率,卷积核的数量,正则化系数);
2.运行环境Matlab2021及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;
以上运行环境Matlab2023及以上。
直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整源码和数据获取方式私信回复SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据平铺
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test = t_test' ;%% 数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 100, ... % 最大训练次数 'InitialLearnRate', 0.01, ... % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ... % 学习率下降'LearnRateDropFactor', 0.1, ... % 学习率下降因子 0.1'LearnRateDropPeriod', 70, ... % 经过训练后 学习率为 0.01*0.1'Shuffle', 'every-epoch', ... % 每次训练打乱数据集'Verbose', 1);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现 目录 SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优…...

【机器学习】数据预处理之数据归一化
数据预处理之数据归一化 一、摘要二、数据归一化概念三、数据归一化实现方法3.1 最值归一化方法3.2 均值方差归一化方法 一、摘要 本文主要讲述了数据归一化(Feature Scaling)的重要性及其方法。首先通过肿瘤大小和发现时间的例子,说明了不同…...

【专题】2024-2025人工智能代理深度剖析:GenAI 前沿、LangChain 现状及演进影响与发展趋势报告汇总PDF洞察(附原数据表)
原文链接:https://tecdat.cn/?p39630 在科技飞速发展的当下,人工智能代理正经历着深刻的变革,其能力演变已然成为重塑各行业格局的关键力量。从早期简单的规则执行,到如今复杂的自主决策与多智能体协作,人工智能代理…...
非递减子序列(力扣491)
这道题的难点依旧是去重,但是与之前做过的子集类问题的区别就是,这里是求子序列,意味着我们不能先给数组中的元素排序。因为子序列中的元素的相对位置跟原数组中的相对位置是一样的,如果我们改变数组中元素的顺序,子序…...
网站快速收录策略:提升爬虫抓取效率
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/102.html 要实现网站快速收录并提升爬虫抓取效率,可以从以下几个方面入手: 一、优化网站结构与内容 清晰的网站结构 设计简洁明了的网站导航,确保爬虫…...

系统思考—自我超越
“人们往往认为是个人的能力限制了他们,但事实上,是组织的结构和惯性思维限制了他们的潜力。”—彼得圣吉 最近和一家行业隐形冠军交流,他们已经是领域第一,老板却依然要求:核心团队都要自我超越,攻坚克难…...

苍穹外卖-菜品分页查询
3. 菜品分页查询 3.1 需求分析和设计 3.1.1 产品原型 系统中的菜品数据很多的时候,如果在一个页面中全部展示出来会显得比较乱,不便于查看,所以一般的系统中都会以分页的方式来展示列表数据。 菜品分页原型: 在菜品列表展示时…...
子集II(力扣90)
这道题与子集(力扣78)-CSDN博客 的区别就在于集合中的元素会重复,那么还按照之前的代码来操作就会得到重复的子集,因此这道题的重点就在于去重。需要注意的是,这里的去重指的是在同一层递归中,而在往下递归的子集中可以取重复的元…...
user、assistant、system三大角色在大语言模型中的作用(通俗解释)
1 概述 在大语言模型中,通常涉及到三种角色:用户(user)、助手(assistant)和系统(system)。简单来说,和大模型对话其实是三个人的电影。 2 角色定义 2.1 系统…...
LeetCode 3444.使数组包含目标值倍数的最小增量
给你两个数组 nums 和 target 。 在一次操作中,你可以将 nums 中的任意一个元素递增 1 。 返回要使 target 中的每个元素在 nums 中 至少 存在一个倍数所需的 最少操作次数 。 示例 1: 输入:nums [1,2,3], target [4] 输出:…...

2月9日星期日今日早报简报微语报早读
2月9日星期日,农历正月十二,早报#微语早读。 1、2025WTT新加坡大满贯:王楚钦林诗栋获得男双冠军; 2、海南万宁快查快处一起缺斤短两案件:拟罚款5万元,责令停业3个月; 3、四川宜宾市筠连县山体…...

MOSSE目标跟踪算法详解
1. 引言 MOSSE算法(Multi-Object Spectral Tracking with Energy Regularization)是多目标跟踪领域的一座里程碑式成果,被认为是开创性的工作,为后续研究奠定了重要基础。该算法通过创新性地结合频域特征分析与能量正则化方法&am…...

生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 下
生成式聊天机器人 -- 基于Pytorch Global Attention 双向 GRU 实现的SeqToSeq模型 -- 下 训练Masked 损失单次训练过程迭代训练过程 测试贪心解码(Greedy decoding)算法实现对话函数 训练和测试模型完整代码 生成式聊天机器人 – 基于Pytorch Global Attention 双向 GRU 实…...

本地部署的DeepSeek-R1-32B与DeepSeek-R1-7B模型效果对比
本地部署的DeepSeek-R1-32B与DeepSeek-R1-7B模型效果对比 在当今人工智能快速发展的时代,大语言模型(Large Language Model, LLM)的应用场景日益广泛。无论是企业级应用还是个人开发,本地部署大语言模型已经成为一种趋势。DeepSeek-R1-32B和DeepSeek-R1-7B作为DeepSeek系列…...

AWS Fargate
AWS Fargate 是一个由 Amazon Web Services (AWS) 提供的无服务器容器计算引擎。它使开发者能够运行容器化应用程序,而无需管理底层的服务器或虚拟机。简而言之,AWS Fargate 让你只需关注应用的容器本身,而不需要管理运行容器的基础设施&…...

表单与交互:HTML表单标签全面解析
目录 前言 一.HTML表单的基本结构 基本结构 示例 二.常用表单控件 文本输入框 选择控件 文件上传 按钮 综合案例 三.标签的作用 四.注意事项 前言 HTML(超文本标记语言)是构建网页的基础,其中表单(<form>&…...

【电机控制器】STC8H1K芯片——低功耗
【电机控制器】STC8H1K芯片——低功耗 文章目录 [TOC](文章目录) 前言一、芯片手册说明二、IDLE模式三、PD模式四、PD模式唤醒五、实验验证1.接线2.视频(待填) 六、参考资料总结 前言 使用工具: 1.STC仿真器烧录器 提示:以下是本…...

win10 llamafactory模型微调相关① || Ollama运行微调模型
目录 微调相关 1.微调结果评估 2.模型下载到本地 导出转换,Ollama运行 1.模型转换(非常好的教程!) 2.Ollama 加载GGUF模型文件 微调相关 1.微调结果评估 【06】LLaMA-Factory微调大模型——微调模型评估_llamafactory评估-C…...
SMU寒假训练周报
训练情况 本周是第一周,训练情况不是很好,因为从期末周到现在一直没训练,不是在复习就是在忙其他的事情,导致状态下滑很严重,没有什么代码的感觉,而且回家之后的事情也挺多,社会实践的时间有时…...
高并发读多写少场景下的高效键查询与顺序统计的方案思路
之前在某平台看到一篇有意思的场景——对于高并发读多写少场景下,如何进行高效键查询与统计早于其创建时间且没有被删除的数量(只需要先入先出,不需要从中间删元素) 在高并发、读多写少的场景下,业务需求通常聚焦在以…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...