当前位置: 首页 > news >正文

神经网络常见激活函数 4-LeakyReLU函数

文章目录

    • LeakyReLU
      • 函数+导函数
      • 函数和导函数图像
      • 优缺点
      • pytorch中的LeakyReLU函数
      • tensorflow 中的LeakyReLU函数

LeakyReLU

  • LeakyReLU: Leaky Rectified Linear Unit

函数+导函数

  • LeakyReLU函数
    L e a k y R e L U = { x x > = 0 p x x < 0 p ∈ ( 0 , 1 ) \rm Leaky{ReLU} = \left\{ \begin{array}{} x \quad x>=0 \\ px \quad x<0 \end{array} \right. \quad p \in (0,1) LeakyReLU={xx>=0pxx<0p(0,1)

  • LeakyReLU函数导数
    d d x L e a k y R e L U = { 1 x ≥ 1 p x < 0 p ∈ ( 0 , 1 ) \frac{d}{dx} \rm LeakyReLU = \left\{ \begin{array}{} 1 \quad x \ge1 \\ p \quad x < 0 \end{array} \right. \quad p \in (0,1) dxdLeakyReLU={1x1px<0p(0,1)
    它和 ReLU 函数的不同之处在于,当 x 小于零时,LeakyReLU 函数的导数值并不为 0,而 是常数𝑝,p 一般设置为某较小的数值,如 0.01 或 0.02


函数和导函数图像

  • 画图

    下面是的 p = 0.5 p=0.5 p=0.5 时候的情况,请注意,p 一般设置为较小值。

    import numpy as np
    from matplotlib import pyplot as plt# 定义 PReLU 函数
    def prelu(x, alpha=0.25):return np.where(x < 0, alpha * x, x)# 定义 PReLU 的导数
    def prelu_derivative(x, alpha=0.25):d = np.where(x < 0, alpha, 1)return d# 生成数据
    x = np.linspace(-2, 2, 1000)
    alpha = 0.5  # 可以调整 alpha 的值
    y = prelu(x, alpha)
    y1 = prelu_derivative(x, alpha)# 绘制图形
    plt.figure(figsize=(12, 8))
    ax = plt.gca()
    plt.plot(x, y, label='PReLU')
    plt.plot(x, y1, label='Derivative')
    plt.title(f'PReLU (alpha={alpha}) and Partial Derivative')# 设置上边和右边无边框
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')# 设置 x 坐标刻度数字或名称的位置
    ax.xaxis.set_ticks_position('bottom')# 设置边框位置
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))plt.legend(loc=2)
    plt.show()
    

    image-20250122173136461

    LeakyReLU 函数有效的克服了 ReLU 函数的缺陷,使用也比较广泛。


优缺点

  • Leaky Relu 的优点(相对 ReLU的改进)

    1. 与 ReLU 函数相比,Leaky ReLU 通过在负半轴引入一个小的线性分量(如 0.01x)来调整负值的梯度问题;这有助于扩大 ReLU 函数的范围,通常斜率 p 的值为 0.01 左右;函数范围是负无穷到正无穷。
    2. Leaky ReLU 激活函数通过在负半轴添加一个小的正斜率(如 0.01),使得负轴的信息不会全部丢失。通过这种方式,Leaky ReLU 激活函数可以确保模型训练过程中神经元的权重在输入小于 0 的情况下依然会得到更新。
    3. 不会出现 Dead ReLU 问题,但关于输入函数 f(x)的部分仍然容易出现梯度爆炸的情况,因此必要时可以搭配 Sigmoid 或 Tanh 使用。
  • Leaky Relu 的缺点

    1. 经典(以及广泛使用的)ReLU 激活函数的变体,带泄露修正线性单元(Leaky ReLU)的输出对负值输入有很小的坡度。由于导数总是不为零,这能减少静默神经元的出现,允许基于梯度的学习(虽然会很慢)。
    2. 从理论上讲,Leaky ReLU 具有 ReLU 的所有优点,而且 Dead ReLU 不会有任何问题,但在实际应用中,尚未完全证明 Leaky ReLU 总是比 ReLU 更好。

pytorch中的LeakyReLU函数

  • 代码

    import torchx = torch.randn(2)
    f = torch.nn.LeakyReLU(negative_slope=0.1) # negative_slope是个常数,即负值部分的斜率leakyRelu_x = f(x)print(f"x: \n{x}")
    print(f"leakyRelu_x:\n{leakyRelu_x}")"""输出"""
    x: 
    tensor([-1.7098,  0.3351])
    leakyRelu_x:
    tensor([-0.1710,  0.3351])
    

    为了便于演示,这里的 p设置成了0.1,即代码中的negative_slope,我们可以看到输出,当x小于0 的时候,leakyRelu_x的结果被乘以0.1。


tensorflow 中的LeakyReLU函数

  • 代码

    python: 3.10.9

    tensorflow: 2.18.0

    import tensorflow as tfalpha = 0.1  # 定义 LeakyReLU 函数,alpha 是负值部分的斜率
    f = lambda x: tf.nn.leaky_relu(x, alpha=alpha)x = tf.random.normal([2])
    leaky_relu_x = f(x)print(f"x: \n{x}")
    print(f"leaky_relu_x:\n{leaky_relu_x}")"""输出"""
    x: 
    [-0.733668    0.06844683]
    leaky_relu_x:
    [-0.07336681  0.06844683]
    

    同上,这里的 p设置成了0.1,即代码中的alpha,我们可以看到输出,当x小于0 的时候,leakyRelu_x的结果被乘以0.1。


相关文章:

神经网络常见激活函数 4-LeakyReLU函数

文章目录 LeakyReLU函数导函数函数和导函数图像优缺点pytorch中的LeakyReLU函数tensorflow 中的LeakyReLU函数 LeakyReLU LeakyReLU&#xff1a; Leaky Rectified Linear Unit 函数导函数 LeakyReLU函数 L e a k y R e L U { x x > 0 p x x < 0 p ∈ ( 0 , 1 ) \rm …...

PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架

源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发&#xff0c;可以打包成APP&#xff08;非H5封壳&#xff09;H5&#xff0c;接其他平台支付通道&#xff0c;前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG&#xff0c;修复无…...

单例模式详解(Java)

单例模式详解(Java) 一、引言 1.1 概述单例模式的基本概念和重要性 单例模式是一种常用的软件设计模式,它确保一个类在整个应用程序中只有一个实例,并提供一个全局访问点来访问这个唯一实例。这种模式在资源管理、配置设置和日志记录等方面非常有用,因为它们通常只需要…...

2025年度Python最新整理的免费股票数据API接口

在2025年这个充满变革与机遇的年份&#xff0c;随着金融市场的蓬勃发展&#xff0c;量化交易逐渐成为了投资者们追求高效、精准交易的重要手段。而在这个领域中&#xff0c;一个实时、准确、稳定的股票API无疑是每位交易者梦寐以求的工具。 现将200多个实测可用且免费的专业股票…...

2.10学习总结

今天接着看了数据结构&#xff0c;但是跟指针有关的看不懂&#xff08;万恶的指针&#xff09;&#xff0c;写了考试的补题。 #include <stdio.h> #include <stdlib.h> int a[1000005]; int main() {int n,i,x0;scanf("%d",&n);for(i1;i<n;i){x;i…...

原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力

原生鸿蒙版小艺APP接入DeepSeek-R1&#xff0c;为HarmonyOS应用开发注入新活力 在科技飞速发展的当下&#xff0c;人工智能与操作系统的融合正深刻改变着我们的数字生活。近日&#xff0c;原生鸿蒙版小艺APP成功接入DeepSeek-R1&#xff0c;这一突破性进展不仅为用户带来了更智…...

从Word里面用VBA调用NVIDIA的免费DeepSeekR1

看上去能用而已。 选中的文字作为输入&#xff0c;运行对应的宏即可&#xff1b;会先MSGBOX提示一下&#xff0c;然后相关内容追加到word文档中。 需要自己注册生成好用的apikey Option ExplicitSub DeepSeek()Dim selectedText As StringDim apiKey As StringDim response A…...

【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题

文章目录 ??Redis的分布式锁??误删问题 ??解决方法??代码实现 ??原子性问题 ??Lua脚本 ?利用Java代码调用Lua脚本改造分布式锁??代码实现 ??Redis的分布式锁 Redis的分布式锁是通过利用Redis的原子操作和特性来实现的。在分布式环境中&#xff0c;多个应用…...

【JVM详解三】垃圾回收机制

一、对象是否存活 强引用&#xff1a;Object obj new Object(); 只要强引用还在&#xff0c;垃圾收集器永远不会回收掉被引用的对象。在不用对象的时将引用赋值为 null&#xff0c;能够帮助垃圾回收器回收对象。比如 ArrayList 的 clear() 方法实现。软引用&#xff08;SoftRe…...

MySQL的字符集(Character Set)和排序规则(Collation)

MySQL的字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation&#xff09; 字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation&#xff09;是数据库中处理文本数据的两个核心概念&#xff0c;二者紧密相关但作用不同。 1…...

2025影视泛目录站群程序设计_源码二次开发新版本无缓存刷新不变实现原理

1. 引言 本设站群程序计书旨在详细阐述苹果CMS泛目录的创新设计与实现&#xff0c;介绍无缓存刷新技术、数据统一化、局部URL控制及性能优化等核心功能&#xff0c;以提升网站访问速度和用户体验。 2. 技术概述 2.1 无缓存刷新技术 功能特点&#xff1a; 内容不变性&#x…...

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…...

array_walk. array_map. array_filter

1. array_walk 函数 array_walk 用于遍历数组并对每个元素执行回调函数。它不会受到数组内部指针位置的影响&#xff0c;会遍历整个数组。回调函数接收的前两个参数分别是元素的值和键名&#xff0c;如果有第三个参数&#xff0c;则数组所有的值都共用这个参数。 示例代码&am…...

数据仓库和商务智能:洞察数据,驱动决策

在数据管理的众多领域中&#xff0c;数据仓库和商务智能&#xff08;BI&#xff09;是将数据转化为洞察力、支持决策制定的关键环节。它们通过整合、存储和分析数据&#xff0c;帮助组织更好地理解业务运营&#xff0c;预测市场趋势&#xff0c;从而制定出更明智的战略。今天&a…...

Vue设计模式到底多少种?

Vue设计模式到底多少种&#xff1f; 很多同学问&#xff0c;Vue到底有多少种设计模式&#xff1f;&#xff1f;各个模式到底是什么意思&#xff1f;&#xff1f;又各自适合什么场景&#xff1f;&#xff1f; 这里我给大家直接说下&#xff0c;Vue的设计模式没有一个固定的数值…...

HTML 属性

HTML 属性 HTML(超文本标记语言)是构建网页的基础,而HTML属性则是赋予HTML元素额外功能和样式的关键。本文将详细介绍HTML属性的概念、常用属性及其应用,帮助您更好地理解和使用HTML。 一、HTML属性概述 HTML属性是HTML元素的组成部分,用于描述元素的状态或行为。属性总…...

oracle如何查询历史最大进程数?

oracle如何查询历史最大进程数&#xff1f; SQL> desc dba_hist_resource_limitName Null? Type---------------------------------------------------- -------- ------------------------------------SNAP_ID …...

SpringBoot单机模式,能否支持一万用户请求并发?

Spring Boot 单机模式能否支持一万用户请求并发&#xff0c;取决于多个因素&#xff1a; 硬件配置&#xff1a;CPU、内存、磁盘I/O和网络带宽是关键。高性能硬件能显著提升并发处理能力。 应用复杂度&#xff1a;业务逻辑复杂度和数据库操作频率会影响性能。复杂的业务逻辑和高…...

[前端]CRX持久化

在 Chrome 扩展开发中&#xff0c;持久化保存数据通常使用 Chrome 的 storage API。storage API 提供了两种存储选项&#xff1a;local 和 sync。使用 local 存储的数据保存在本地浏览器中&#xff0c;只能在同一设备上访问。使用 sync 存储的数据可以在用户登录其 Google 帐户…...

模型 替身决策

系列文章分享模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。替身决策&#xff0c;换位思考&#xff0c;多角度决策。 1 替身决策模型的应用 1.1 替身决策模型在面试中的应用-小李的求职面试 小李是一名应届毕业生&#xff0c;正在积极寻找工作机会。在面试过程中…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...