基于用户的协同过滤算法推荐
import numpy as np
计算用户之间的相似度(这里使用余弦相似度)
def cosine_similarity(user1, user2):
numerator = np.dot(user1, user2)
denominator = np.linalg.norm(user1) * np.linalg.norm(user2)
return numerator / denominator if denominator!= 0 else 0
获取与目标用户最相似的用户
def get_similar_users(target_user, user_item_matrix, top_n=5):
similarities = []
for i, user in enumerate(user_item_matrix):
if i!= target_user:
sim = cosine_similarity(user_item_matrix[target_user], user)
similarities.append((i, sim))
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_n]
预测目标用户对物品的评分
def predict_rating(target_user, item, user_item_matrix, similar_users):
numerator = 0
denominator = 0
for similar_user, similarity in similar_users:
if user_item_matrix[similar_user][item]!= 0:
numerator += similarity * user_item_matrix[similar_user][item]
denominator += similarity
return numerator / denominator if denominator!= 0 else 0
为目标用户生成推荐列表
def recommend_items(target_user, user_item_matrix, top_n=10):
similar_users = get_similar_users(target_user, user_item_matrix)
item_scores = []
for item in range(user_item_matrix.shape[1]):
if user_item_matrix[target_user][item] == 0:
score = predict_rating(target_user, item, user_item_matrix, similar_users)
item_scores.append((item, score))
item_scores.sort(key=lambda x: x[1], reverse=True)
return item_scores[:top_n]
相关文章:
基于用户的协同过滤算法推荐
import numpy as np 计算用户之间的相似度(这里使用余弦相似度) def cosine_similarity(user1, user2): numerator np.dot(user1, user2) denominator np.linalg.norm(user1) * np.linalg.norm(user2) return numerator / denominator if denominato…...
4.python+flask+SQLAlchemy+达梦数据库
前提 1.liunx Centos7上通过docker部署了达梦数据库。从达梦官网下载的docker镜像。(可以参考前面的博文) 2.windows上通过下载x86,win64位的达梦数据库,只安装客户端,不安装服务端。从达梦官网下载达梦数据库windows版。(可以参考前面的博文) 这样就可以用windows的达…...
神经网络常见激活函数 4-LeakyReLU函数
文章目录 LeakyReLU函数导函数函数和导函数图像优缺点pytorch中的LeakyReLU函数tensorflow 中的LeakyReLU函数 LeakyReLU LeakyReLU: Leaky Rectified Linear Unit 函数导函数 LeakyReLU函数 L e a k y R e L U { x x > 0 p x x < 0 p ∈ ( 0 , 1 ) \rm …...
PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架
源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发,可以打包成APP(非H5封壳)H5,接其他平台支付通道,前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG,修复无…...
单例模式详解(Java)
单例模式详解(Java) 一、引言 1.1 概述单例模式的基本概念和重要性 单例模式是一种常用的软件设计模式,它确保一个类在整个应用程序中只有一个实例,并提供一个全局访问点来访问这个唯一实例。这种模式在资源管理、配置设置和日志记录等方面非常有用,因为它们通常只需要…...
2025年度Python最新整理的免费股票数据API接口
在2025年这个充满变革与机遇的年份,随着金融市场的蓬勃发展,量化交易逐渐成为了投资者们追求高效、精准交易的重要手段。而在这个领域中,一个实时、准确、稳定的股票API无疑是每位交易者梦寐以求的工具。 现将200多个实测可用且免费的专业股票…...
2.10学习总结
今天接着看了数据结构,但是跟指针有关的看不懂(万恶的指针),写了考试的补题。 #include <stdio.h> #include <stdlib.h> int a[1000005]; int main() {int n,i,x0;scanf("%d",&n);for(i1;i<n;i){x;i…...
原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力
原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力 在科技飞速发展的当下,人工智能与操作系统的融合正深刻改变着我们的数字生活。近日,原生鸿蒙版小艺APP成功接入DeepSeek-R1,这一突破性进展不仅为用户带来了更智…...
从Word里面用VBA调用NVIDIA的免费DeepSeekR1
看上去能用而已。 选中的文字作为输入,运行对应的宏即可;会先MSGBOX提示一下,然后相关内容追加到word文档中。 需要自己注册生成好用的apikey Option ExplicitSub DeepSeek()Dim selectedText As StringDim apiKey As StringDim response A…...
【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题
文章目录 ??Redis的分布式锁??误删问题 ??解决方法??代码实现 ??原子性问题 ??Lua脚本 ?利用Java代码调用Lua脚本改造分布式锁??代码实现 ??Redis的分布式锁 Redis的分布式锁是通过利用Redis的原子操作和特性来实现的。在分布式环境中,多个应用…...
【JVM详解三】垃圾回收机制
一、对象是否存活 强引用:Object obj new Object(); 只要强引用还在,垃圾收集器永远不会回收掉被引用的对象。在不用对象的时将引用赋值为 null,能够帮助垃圾回收器回收对象。比如 ArrayList 的 clear() 方法实现。软引用(SoftRe…...
MySQL的字符集(Character Set)和排序规则(Collation)
MySQL的字符集(Character Set)和排序规则(Collation) 字符集(Character Set)和排序规则(Collation)是数据库中处理文本数据的两个核心概念,二者紧密相关但作用不同。 1…...
2025影视泛目录站群程序设计_源码二次开发新版本无缓存刷新不变实现原理
1. 引言 本设站群程序计书旨在详细阐述苹果CMS泛目录的创新设计与实现,介绍无缓存刷新技术、数据统一化、局部URL控制及性能优化等核心功能,以提升网站访问速度和用户体验。 2. 技术概述 2.1 无缓存刷新技术 功能特点: 内容不变性&#x…...
常用的python库-安装与使用
常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…...
array_walk. array_map. array_filter
1. array_walk 函数 array_walk 用于遍历数组并对每个元素执行回调函数。它不会受到数组内部指针位置的影响,会遍历整个数组。回调函数接收的前两个参数分别是元素的值和键名,如果有第三个参数,则数组所有的值都共用这个参数。 示例代码&am…...
数据仓库和商务智能:洞察数据,驱动决策
在数据管理的众多领域中,数据仓库和商务智能(BI)是将数据转化为洞察力、支持决策制定的关键环节。它们通过整合、存储和分析数据,帮助组织更好地理解业务运营,预测市场趋势,从而制定出更明智的战略。今天&a…...
Vue设计模式到底多少种?
Vue设计模式到底多少种? 很多同学问,Vue到底有多少种设计模式??各个模式到底是什么意思??又各自适合什么场景?? 这里我给大家直接说下,Vue的设计模式没有一个固定的数值…...
HTML 属性
HTML 属性 HTML(超文本标记语言)是构建网页的基础,而HTML属性则是赋予HTML元素额外功能和样式的关键。本文将详细介绍HTML属性的概念、常用属性及其应用,帮助您更好地理解和使用HTML。 一、HTML属性概述 HTML属性是HTML元素的组成部分,用于描述元素的状态或行为。属性总…...
oracle如何查询历史最大进程数?
oracle如何查询历史最大进程数? SQL> desc dba_hist_resource_limitName Null? Type---------------------------------------------------- -------- ------------------------------------SNAP_ID …...
SpringBoot单机模式,能否支持一万用户请求并发?
Spring Boot 单机模式能否支持一万用户请求并发,取决于多个因素: 硬件配置:CPU、内存、磁盘I/O和网络带宽是关键。高性能硬件能显著提升并发处理能力。 应用复杂度:业务逻辑复杂度和数据库操作频率会影响性能。复杂的业务逻辑和高…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
