当前位置: 首页 > news >正文

Kafka中的KRaft算法

我们之前的Kafka值依赖于Zookeeper注册中心来启动的,往里面注册我们节点信息

Kafka是什么时候不依赖Zookeeper节点了

Kafka2.8.0开始就可以不依赖Zookeeper了

可以用KRaft模式代替Zookeeper管理Kafka集群


KRaft Controller和KRaft Leader的关系

两者关系

  • Leader 是 Controller 的选举结果:KRaft Controller 负责 Kafka 集群的管理,如主题管理、分区分配、副本管理等重要任务。在 KRaft 架构下,Controller 节点是从所有 Broker 节点中通过 KRaft 选举机制选出的,当选的这个 “Controller Broker” 节点内部存在一个 Leader 角色, 这个 Leader 负责在 Controller 节点内部以及与其他 Broker 节点之间协调和同步集群元数据等关键信息 也就是说,KRaft Leader 是在 KRaft Controller 选举过程中确定的,用于主导 Controller 相关工作的执行以及与其他节点交互。
  • 数据交互:从数据流转角度看,如图片中展示的,KRaft Controller 会从 KRaft Leader 拉取数据,这是因为 KRaft Leader 维护着最新的集群元数据状态等信息,其他 Controller 需要通过从 Leader 拉取数据来保证自身拥有的集群元数据的一致性和及时性,进而正常执行集群管理职责

Controller 与 Leader 的协作关系

  • 元数据同步Controller 会将集群的元数据信息同步给各个分区的 Leader,使 Leader 能够根据最新的元数据来处理客户端的请求。例如,当分区的副本数量发生变化时,Controller 会将新的副本信息通知给 Leader,以便 Leader 进行数据同步等操作。
  • 故障处理:当 Leader 出现故障时,Controller 会触发新的 Leader 选举流程,并确保新的 Leader 能够尽快接管工作,保证数据的可用性和一致性。同时,Controller 也会与新的 Leader 协作,更新集群元数据,让其他 Broker 和客户端能够及时获取到最新的状态信息

人话

我们会选出一个Broker作为管理集群的Controller,它有一个单分区的内部主题_cluster_metadata

存储元数据信息

然后还会选几个备用Broker,里面有存储元数据信息的单分区的内部主题_cluster_metadata副本

所以并不是每一个Borker都是Controller


为什么用KRaft代替Zookeeper管理kafka集群元数据之Broker扩展差 

Zookeeper管理集群流程
Kafka中会有一个Broker节点被选为控制器Controller,去管理整个集群

如果有一个Broker节点出现故障

那么Controller将负责为故障Broker节点上的分区重新选出新的Leader副本

Kafka的Broker节点都默认接收受控关机

受控关机的好处:尽量减少对客户端服务的中断

假设我们要关闭Broker0

我们会向Broker0发送一个SIG_TERM信号

然后在Broker0关闭之前,我们要向控制器Controller发送一个ControllerShutDownRequet

然后控制器Controller完成分区的重新选主和ISR列表收缩工作

然后Broker0同步阻塞,等待控制器Controller的回复

收缩

然后这个收缩成{2,3}

这里的蓝色表示ISR信息还没有持久化到Zookeeper集群中

然后我们的Controller会在这两个副本中选择一个Partition-的Leader副本

最后把ISR列表信息以及Leader副本信息持久化到Zookeeper集群中

ISR列表为红色,说明已经持久化到Zookeeper集群中了

发送LeaderAndlsrRequest请求

收到该请求的Broker节点将从LeaderAndlsrRequest请求中解析出Leader和ISR列表信息

Kafka1.1.0之前,必须在一个Broker节点明确回复收到数据之后,控制器才会向下一个Broker节点发送LeaderAndlsrRequest请求

Broker从请求中解析出Leader等元数据信息之后,并且把数据存储在本地之后,它才会给Controller一个响应,告知Controller元数据信息是否写入成功

只有Controller收到响应成功之后,他才会向下一个节点例如Broker-3发送LeaderAndlsrRequest请求

Kafka1.0之前,所有的同步元数据操作都是单线程同步阻塞进行的

甚至在关闭之前,Controller一次只会移动一个Leader分区

整个过程都是同步阻塞进行的

当这个节点都迁移完之后

我们的Controller才会向Broker-0节点发送ControlledShutdownResponse响应,Broker-0才会关闭自身服务

总结

  1. 1个控制器需要向ZK单线程更新写入每个分区的最新元数据
  2. 关闭一个Broker服务因为这个单线程写入模式,可能会导致耗时很长
  3. 分区在重新选举Leader的时候,会暂停对外提供读写服务


KRaft模式中Kafka的Controller节点的日志同步过程

在KRaft中将Kafka工作产生的日志都放到了一个单分区的内部主题_cluster_metadata

这个主题中存储的数据是原来Zookeeper集群管理Kafka的时候,在Zookeeper的zNode节点中存储的元数据

PS:这个主题是一个单分区主题

只有一个分区的好处是,可以保证数据的全局有限性

因为一旦Controller产生的日志顺序出现错乱后果是相当严重

因此这是一个Kafka的内部单分区主题

但是这个主题是可以有多个副本的

其中Leader副本存储的是Active Controller节点直接写入的数据

相当于:你配置了多少个Controller角色,这个_cluster_metadata主题就可以自动生成多少个分区的副本

写入数据

例如我们用命令创建主题或者修改分区的时候,Kafka的后台会向Active状态的Controller节点发送元数据信息

并且我们的元数据写入的时候我们还会有任期编号,例如这个蓝色的1

这个编号的目的:表示这条消息是在哪个任期产生的

复制数据

我们的KRaft采用的是拉模式来复制日志

然后我们的日志进行异步提交

提交日志

然后Leader节点会告诉Follower节点,让他们也向日志提交相应的内容

移动高水位

蓝色那条线移动了

KRaft的提交是多数原则,而不是ISR机制

records 的 commit 依据是 quorum 而不是 ISR”,Kafka 传统副本复制中,消息的提交(commit)依赖 ISR(In - Sync Replica,同步副本集)机制。

ISR 是指与 Leader 副本保持同步的 Follower 副本集合,当 Leader 接收到消息并写入本地日志后,只要 ISR 中的多数副本确认收到消息,该消息就可以被标记为已提交

而在 KRaft 中,records 的提交依据是 quorum(法定人数)原则。quorum 指的是在一个分布式系统中,为了达成共识或者完成某个操作所需要的最少节点数量。在 KRaft 的场景下,当满足 quorum 数量的节点确认收到并持久化了 records,这些 records 就会被提交。这与 Kafka 传统副本复制的 ISR 机制在确认消息提交的方式上有所不同,quorum 机制更强调分布式系统中的多数节点的认可,以实现数据的一致性和可靠性

KRaft是多数副本机制,ISR是多数ISR机制(ISR中不一定是全部副本,例如我们副本有5个,ISR中有3个,我们是以ISR中多数确认为主而不是多数副本确认为主,ISR中副本数不等于总副本数)

  • ISR:消息提交并不一定基于多数节点认可。只要 Leader 副本收到 ISR 中所有副本的 ACK 确认(即使 ISR 成员可能少于副本总数的一半 ),就可将消息标记为已提交。 例如,若一个分区有 5 个副本,ISR 集合中有 3 个副本,只要这 3 个副本都确认收到消息,消息就提交,不要求是副本总数的多数。
  • quorum:严格遵循多数节点认可原则。在一个有 n 个节点的分布式系统中,通常需要超过 n/2 的节点认可才能完成相关操作(如消息提交 )。例如,在 5 个节点的系统中,需要至少 3 个节点认可

Raft和KRaft有什么不同? 

在Kafka2.8.0开始就可以不依赖Zookeeper了

可以用KRaft代替Zookeeper管理Kafka集群

Raft算法使用推模式

KRaft算法使用拉模式

在KRaft管理模式中,可以部署奇数个Controller节点

并且有且只有一个Controller节点是Leader节点,也就是Active状态

只有Active状态的Leader节点才可以对外提供服务

其他的节点都是Follower节点

这些Follower状态的Controller节点都是从Active状态的Leader节点拉取元数据,并备份到本地的KRaft log文件中

Kraft的拉模式和Raft的推模式具体有哪些不同呢?各有什么优缺点

在元数据不大的情况下,推模式不是元数据备份的实时性更好吗?为什么要改造成拉模式呢?

因为一开始Kafka的架构就是每个Partition的分区副本都是Follower从Leader副本同步数据

为了遵循一开始的使用架构Kafka才对Raft日志的复制部分进行了改造,改造成了拉模式

其他不同

任期时间

Raft模式中的Leader的任期时间是term

而在KRaft中,Leader的任期时间是epoch

新的状态节点

这个Observer节点不会参与Leader选举

它只是负责发现并从Leader节点中拉取元数据信息

每个Broker节点都充当Observer

控制器节点就充当Leader和Follower

Broker节点会按照需求从Leader节点中拉取本地不存在的元数据信息


全文总结-Zookeeper管理和Raft和KRaft管理的区别 

Zookeeper中Broker受控关机时间长

Kafka1.1.0之前是单线程同步阻塞执行

之后是异步非阻塞执行

  1. 1个控制器需要向ZK单线程更新写入每个分区的最新元数据
  2. 关闭一个Broker服务因为这个单线程写入模式,可能会导致耗时很长
  3. 分区在重新选举Leader的时候,会暂停对外提供读写服务

KRaft和Zookeeper的管理元数据区别

在KRaft中将Kafka工作产生的日志都放到了一个单分区的内部主题_cluster_metadata

这个主题中存储的数据是原来Zookeeper集群管理Kafka的时候,在Zookeeper的zNode节点中存储的元数据

KRaft和Zookeeper的日志提交区别

Zookeeper机制下,我们使用的是ISR机制

KRaft模式下,我们使用的是多数投票机制

KRaft和Zookeeper的备用Controller机制

Zookeeper 管理 Kafka 中的 Controller(只有一个Controller)
  • 选举恢复机制:如前面所说,Kafka 依靠 Zookeeper 进行 Controller 选举,当当前 Controller 节点故障时,Zookeeper 通过删除 “/controller” 节点触发新的选举流程,其他 Broker 竞争成为新的 Controller。这个过程中没有专门预先设定好的备用 Controller 节点,所有非 Controller 的 Broker 都有机会参与选举
  • 潜在问题:在选举期间,可能会有短暂的集群管理空白期,并且如果有大量 Broker 同时竞争 Controller,可能会导致选举过程不稳定或产生 “脑裂” 等问题,影响 Kafka 集群的正常运行。
KRaft 中的 Controller(有一个Active Controller和多个备用Controller)
  • 备用机制:KRaft 中有类似备用 Controller 的概念。在 KRaft 协议中,会有一个 Leader 作为主要的 Controller 负责管理和协调工作,同时存在多个 Follower 节点可以在 Leader 出现故障时快速切换成为新的 Leader(即新的 Controller)。 这些 Follower 节点会实时同步 Leader 的状态和数据,相当于备用的 Controller,能够在故障发生时迅速接管工作,减少集群管理的中断时间
  • 优势:这种机制相比 Zookeeper 管理 Kafka 的 Controller 选举方式,故障切换速度更快,因为备用节点已经在持续同步数据和状态,不需要像 Zookeeper 管理 Kafka 那样重新进行选举流程,从而提高了集群的稳定性和可靠性

KRaft和Raft的区别

Raft模式下,我们是Leader向Follower推数据来进行日志同步

KRaft模式下,我们是Follower向Leader拉数据来进行日志同步

KRaft中有个新角色,是和Zookeeper管理集群的时候一样的角色,也就是Observer

Observer按照需求从Leader节点中拉取本地不存在的元数据信息

Observer 的存在可以帮助集群在不增加选举投票负担的情况下,扩展获取元数据的能力提升系统的读性能


参考文章:bilibli码上加薪 

相关文章:

Kafka中的KRaft算法

我们之前的Kafka值依赖于Zookeeper注册中心来启动的,往里面注册我们节点信息 Kafka是什么时候不依赖Zookeeper节点了 在Kafka2.8.0开始就可以不依赖Zookeeper了 可以用KRaft模式代替Zookeeper管理Kafka集群 KRaft Controller和KRaft Leader的关系 两者关系 Lea…...

vue3 -- 集成 amap(高德地图)

🍍效果 本文介绍了如何在 Vue 3 项目中集成高德地图(AMap),并使用 PoiPicker 实现地点搜索功能。 文章首先通过 AMapLoader 异步加载高德地图 API,并初始化 Map 实例。同时,借助 AMapUI 组件库引入 PoiPicker,绑定搜索输入框,实现地点选择功能。PoiPicker 监听用户的 …...

基于用户的协同过滤算法推荐

import numpy as np 计算用户之间的相似度(这里使用余弦相似度) def cosine_similarity(user1, user2): numerator np.dot(user1, user2) denominator np.linalg.norm(user1) * np.linalg.norm(user2) return numerator / denominator if denominato…...

4.python+flask+SQLAlchemy+达梦数据库

前提 1.liunx Centos7上通过docker部署了达梦数据库。从达梦官网下载的docker镜像。(可以参考前面的博文) 2.windows上通过下载x86,win64位的达梦数据库,只安装客户端,不安装服务端。从达梦官网下载达梦数据库windows版。(可以参考前面的博文) 这样就可以用windows的达…...

神经网络常见激活函数 4-LeakyReLU函数

文章目录 LeakyReLU函数导函数函数和导函数图像优缺点pytorch中的LeakyReLU函数tensorflow 中的LeakyReLU函数 LeakyReLU LeakyReLU&#xff1a; Leaky Rectified Linear Unit 函数导函数 LeakyReLU函数 L e a k y R e L U { x x > 0 p x x < 0 p ∈ ( 0 , 1 ) \rm …...

PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架

源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发&#xff0c;可以打包成APP&#xff08;非H5封壳&#xff09;H5&#xff0c;接其他平台支付通道&#xff0c;前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG&#xff0c;修复无…...

单例模式详解(Java)

单例模式详解(Java) 一、引言 1.1 概述单例模式的基本概念和重要性 单例模式是一种常用的软件设计模式,它确保一个类在整个应用程序中只有一个实例,并提供一个全局访问点来访问这个唯一实例。这种模式在资源管理、配置设置和日志记录等方面非常有用,因为它们通常只需要…...

2025年度Python最新整理的免费股票数据API接口

在2025年这个充满变革与机遇的年份&#xff0c;随着金融市场的蓬勃发展&#xff0c;量化交易逐渐成为了投资者们追求高效、精准交易的重要手段。而在这个领域中&#xff0c;一个实时、准确、稳定的股票API无疑是每位交易者梦寐以求的工具。 现将200多个实测可用且免费的专业股票…...

2.10学习总结

今天接着看了数据结构&#xff0c;但是跟指针有关的看不懂&#xff08;万恶的指针&#xff09;&#xff0c;写了考试的补题。 #include <stdio.h> #include <stdlib.h> int a[1000005]; int main() {int n,i,x0;scanf("%d",&n);for(i1;i<n;i){x;i…...

原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力

原生鸿蒙版小艺APP接入DeepSeek-R1&#xff0c;为HarmonyOS应用开发注入新活力 在科技飞速发展的当下&#xff0c;人工智能与操作系统的融合正深刻改变着我们的数字生活。近日&#xff0c;原生鸿蒙版小艺APP成功接入DeepSeek-R1&#xff0c;这一突破性进展不仅为用户带来了更智…...

从Word里面用VBA调用NVIDIA的免费DeepSeekR1

看上去能用而已。 选中的文字作为输入&#xff0c;运行对应的宏即可&#xff1b;会先MSGBOX提示一下&#xff0c;然后相关内容追加到word文档中。 需要自己注册生成好用的apikey Option ExplicitSub DeepSeek()Dim selectedText As StringDim apiKey As StringDim response A…...

【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题

文章目录 ??Redis的分布式锁??误删问题 ??解决方法??代码实现 ??原子性问题 ??Lua脚本 ?利用Java代码调用Lua脚本改造分布式锁??代码实现 ??Redis的分布式锁 Redis的分布式锁是通过利用Redis的原子操作和特性来实现的。在分布式环境中&#xff0c;多个应用…...

【JVM详解三】垃圾回收机制

一、对象是否存活 强引用&#xff1a;Object obj new Object(); 只要强引用还在&#xff0c;垃圾收集器永远不会回收掉被引用的对象。在不用对象的时将引用赋值为 null&#xff0c;能够帮助垃圾回收器回收对象。比如 ArrayList 的 clear() 方法实现。软引用&#xff08;SoftRe…...

MySQL的字符集(Character Set)和排序规则(Collation)

MySQL的字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation&#xff09; 字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation&#xff09;是数据库中处理文本数据的两个核心概念&#xff0c;二者紧密相关但作用不同。 1…...

2025影视泛目录站群程序设计_源码二次开发新版本无缓存刷新不变实现原理

1. 引言 本设站群程序计书旨在详细阐述苹果CMS泛目录的创新设计与实现&#xff0c;介绍无缓存刷新技术、数据统一化、局部URL控制及性能优化等核心功能&#xff0c;以提升网站访问速度和用户体验。 2. 技术概述 2.1 无缓存刷新技术 功能特点&#xff1a; 内容不变性&#x…...

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…...

array_walk. array_map. array_filter

1. array_walk 函数 array_walk 用于遍历数组并对每个元素执行回调函数。它不会受到数组内部指针位置的影响&#xff0c;会遍历整个数组。回调函数接收的前两个参数分别是元素的值和键名&#xff0c;如果有第三个参数&#xff0c;则数组所有的值都共用这个参数。 示例代码&am…...

数据仓库和商务智能:洞察数据,驱动决策

在数据管理的众多领域中&#xff0c;数据仓库和商务智能&#xff08;BI&#xff09;是将数据转化为洞察力、支持决策制定的关键环节。它们通过整合、存储和分析数据&#xff0c;帮助组织更好地理解业务运营&#xff0c;预测市场趋势&#xff0c;从而制定出更明智的战略。今天&a…...

Vue设计模式到底多少种?

Vue设计模式到底多少种&#xff1f; 很多同学问&#xff0c;Vue到底有多少种设计模式&#xff1f;&#xff1f;各个模式到底是什么意思&#xff1f;&#xff1f;又各自适合什么场景&#xff1f;&#xff1f; 这里我给大家直接说下&#xff0c;Vue的设计模式没有一个固定的数值…...

HTML 属性

HTML 属性 HTML(超文本标记语言)是构建网页的基础,而HTML属性则是赋予HTML元素额外功能和样式的关键。本文将详细介绍HTML属性的概念、常用属性及其应用,帮助您更好地理解和使用HTML。 一、HTML属性概述 HTML属性是HTML元素的组成部分,用于描述元素的状态或行为。属性总…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...