当前位置: 首页 > news >正文

c/c++蓝桥杯经典编程题100道(21)背包问题

背包问题

->返回c/c++蓝桥杯经典编程题100道-目录


目录

背包问题

一、题型解释

二、例题问题描述

三、C语言实现

解法1:0-1背包(基础动态规划,难度★)

解法2:0-1背包(空间优化版,难度★★)

解法3:完全背包(难度★★)

四、C++实现

解法1:0-1背包(STL vector版,难度★☆)

解法2:多重背包(二进制优化,难度★★★)

五、总结对比表

六、特殊方法与内置函数补充

1. C++ STL的 max 函数

2. 滚动数组优化

3. 单调队列优化


一、题型解释

背包问题是动态规划中的经典问题,核心是 在限定容量下选择物品使得总价值最大化。常见变种:

  1. 0-1背包:每个物品只能选或不选(每个物品1个)。

  2. 完全背包:每个物品可以选无限次。

  3. 多重背包:每个物品最多选指定次数。

  4. 分组背包:每组物品中只能选一个。


二、例题问题描述

例题1(0-1背包)

  • 容量 W=4,物品重量 [1,3,4],价值 [15,20,30],输出最大价值 35(选物品0和2)。

例题2(完全背包)

  • 容量 W=5,物品重量 [1,2],价值 [15,20],输出最大价值 75(选5个物品0)。

例题3(多重背包)

  • 容量 W=10,物品重量 [2,3],价值 [5,7],数量 [2,3],输出最大价值 24(选3个物品1)。

例题4(分组背包)

  • 容量 W=6,分组物品 [[1,2], [3,4]](每组选一个),输出最大价值 6(选第一组2,第二组4)。


三、C语言实现

解法1:0-1背包(基础动态规划,难度★)

通俗解释

  • 填表格记录不同容量下的最大价值,像存钱罐一样逐步塞入物品。

c

#include <stdio.h>
#include <string.h>#define MAX_W 100
#define MAX_N 100int max(int a, int b) { return a > b ? a : b; }int knapsack01(int W, int wt[], int val[], int n) {int dp[MAX_N][MAX_W]; // dp[i][j]:前i个物品,容量j的最大价值memset(dp, 0, sizeof(dp));for (int i = 1; i <= n; i++) {for (int j = 1; j <= W; j++) {if (wt[i-1] > j) { // 当前物品超重,无法选择dp[i][j] = dp[i-1][j];} else { // 能选:比较选或不选的价值dp[i][j] = max(dp[i-1][j], dp[i-1][j - wt[i-1]] + val[i-1]);}}}return dp[n][W];
}int main() {int W = 4;int wt[] = {1,3,4}, val[] = {15,20,30};int n = sizeof(wt)/sizeof(wt[0]);printf("0-1背包最大价值:%d\n", knapsack01(W, wt, val, n)); // 输出35return 0;
}

代码逻辑

  1. 初始化DP表dp[i][j] 表示前 i 个物品在容量 j 下的最大价值。

  2. 填表规则

    • 物品超重时,继承上一行结果。

    • 否则,取“不选”和“选”的最大值。


解法2:0-1背包(空间优化版,难度★★)

通俗解释

  • 仅用一维数组,倒序遍历容量,避免覆盖未计算的数据。

c

int knapsack01Optimized(int W, int wt[], int val[], int n) {int dp[MAX_W] = {0};for (int i = 0; i < n; i++) { // 遍历物品for (int j = W; j >= wt[i]; j--) { // 逆序更新,防止重复选dp[j] = max(dp[j], dp[j - wt[i]] + val[i]);}}return dp[W];
}

代码逻辑

  1. 一维数组dp[j] 表示容量 j 的最大价值。

  2. 逆序遍历:确保每个物品只被选一次。


解法3:完全背包(难度★★)

通俗解释

  • 正序遍历容量,允许重复选择物品,像存钱罐可以多次塞硬币。

c

int completeKnapsack(int W, int wt[], int val[], int n) {int dp[MAX_W] = {0};for (int i = 0; i < n; i++) {for (int j = wt[i]; j <= W; j++) { // 正序更新,允许重复选dp[j] = max(dp[j], dp[j - wt[i]] + val[i]);}}return dp[W];
}int main() {int W = 5;int wt[] = {1,2}, val[] = {15,20};int n = sizeof(wt)/sizeof(wt[0]);printf("完全背包最大价值:%d\n", completeKnapsack(W, wt, val, n)); // 输出75return 0;
}

代码逻辑

  • 正序遍历:允许同一物品多次被选中。


四、C++实现

解法1:0-1背包(STL vector版,难度★☆)

通俗解释

  • 使用 vector 替代数组,动态管理内存,避免固定大小限制。

cpp

#include <iostream>
#include <vector>
using namespace std;int knapsack01STL(int W, vector<int>& wt, vector<int>& val) {vector<int> dp(W + 1, 0);for (int i = 0; i < wt.size(); i++) {for (int j = W; j >= wt[i]; j--) { // 逆序更新dp[j] = max(dp[j], dp[j - wt[i]] + val[i]);}}return dp[W];
}int main() {vector<int> wt = {1,3,4}, val = {15,20,30};int W = 4;cout << "0-1背包最大价值:" << knapsack01STL(W, wt, val) << endl; // 输出35return 0;
}

代码逻辑

  • 与C语言空间优化版相同,但使用 vector 动态管理内存。


解法2:多重背包(二进制优化,难度★★★)

通俗解释

  • 将物品数量拆分为二进制组合(如7=1+2+4),转化为0-1背包问题。

cpp

int multiKnapsack(int W, vector<int>& wt, vector<int>& val, vector<int>& cnt) {vector<int> dp(W + 1, 0);for (int i = 0; i < wt.size(); i++) {int k = 1;int remain = cnt[i];while (k <= remain) { // 二进制拆分int w = wt[i] * k;int v = val[i] * k;for (int j = W; j >= w; j--) {dp[j] = max(dp[j], dp[j - w] + v);}remain -= k;k *= 2;}if (remain > 0) { // 处理剩余数量int w = wt[i] * remain;int v = val[i] * remain;for (int j = W; j >= w; j--) {dp[j] = max(dp[j], dp[j - w] + v);}}}return dp[W];
}int main() {vector<int> wt = {2,3}, val = {5,7}, cnt = {2,3};int W = 10;cout << "多重背包最大价值:" << multiKnapsack(W, wt, val, cnt) << endl; // 输出24return 0;
}

代码逻辑

  1. 二进制拆分:将数量拆分为2的幂次之和,减少物品数量。

  2. 转化为0-1背包:对每个拆分后的物品进行0-1背包处理。


五、总结对比表

方法时间复杂度空间复杂度优点缺点
0-1背包基础DPO(nW)O(nW)直观易理解内存占用高
0-1背包空间优化O(nW)O(W)内存高效无法回溯具体方案
完全背包O(nW)O(W)支持无限次选择不适用0-1场景
多重背包优化O(nW logS)O(W)处理数量限制实现较复杂

六、特殊方法与内置函数补充

1. C++ STL的 max 函数

  • 用法max(a, b) 返回较大值,需包含 <algorithm> 头文件。

2. 滚动数组优化

  • 原理:利用奇偶行交替存储,将二维DP压缩为两个一维数组。

3. 单调队列优化

  • 适用场景:多重背包的进一步优化,时间复杂度降至O(nW)。

->返回c/c++蓝桥杯经典编程题100道-目录

相关文章:

c/c++蓝桥杯经典编程题100道(21)背包问题

背包问题 ->返回c/c蓝桥杯经典编程题100道-目录 目录 背包问题 一、题型解释 二、例题问题描述 三、C语言实现 解法1&#xff1a;0-1背包&#xff08;基础动态规划&#xff0c;难度★&#xff09; 解法2&#xff1a;0-1背包&#xff08;空间优化版&#xff0c;难度★…...

电赛DEEPSEEK

以下是针对竞赛题目的深度优化方案&#xff0c;重点解决频率接近时的滤波难题和相位测量精度问题&#xff1a; 以下是使用NI Multisim 14.3实现本项目的详细解决方案&#xff1a; 一、基础要求实现方案&#xff08;模块化设计&#xff09; 1. 双频信号发生电路 电路结构&…...

VSOMEIP ROUTING应用和CLIENT应用之间交互的消息

#define VSOMEIP_ASSIGN_CLIENT 0x00 // client应用请求分配client_id #define VSOMEIP_ASSIGN_CLIENT_ACK 0x01 // routing应用返回分配的client_id #define VSOMEIP_REGISTER_APPLICATION 0x02 // client应用注册someip应用 #…...

HTML之基本布局div|span

HTML基本布局使用 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"width<device-width>, initial-scale1.0"><title>布局</title> <…...

Linux下学【MySQL】常用函数助你成为数据库大师~(配sql+实操图+案例巩固 通俗易懂版~)

绪论​ 每日激励&#xff1a;“唯有努力&#xff0c;才能进步” 绪论​&#xff1a; 本章是MySQL中常见的函数&#xff0c;利用好函数能很大的帮助我们提高MySQL使用效率&#xff0c;也能很好处理一些情况&#xff0c;如字符串的拼接&#xff0c;字符串的获取&#xff0c;进制…...

【Rabbitmq篇】高级特性----TTL,死信队列,延迟队列

目录 一.TTL ???1.设置消息的TTL 2.设置队列的TTL 3.俩者区别? 二.死信队列 定义&#xff1a; 消息成为死信的原因&#xff1a; 1.消息被拒绝&#xff08;basic.reject 或 basic.nack&#xff09; 2.消息过期&#xff08;TTL&#xff09; 3.队列达到最大长度? …...

机器学习赋能的智能光子学器件系统研究与应用

机器学习赋能的智能光子学器件系统研究与应用 时间&#xff1a; 2025年03月29日-03月30日 2025年04月05日-04月06日 机器学习赋能的光子学器件与系统&#xff1a;从创新设计到前沿应用 课程针对光子学方面的从业科研人员及开发者&#xff0c;希望了解和实践在集成光学/空间…...

尚硅谷课程【笔记】——大数据之Linux【三】

课程视频链接&#xff1a;尚硅谷大数据Linux课程 七、定时任务调度 任务调度&#xff1a;指系统在某个时间执行的特定的命令或程序。 1&#xff09;系统工作&#xff1a;有些重要的工作必须周而复始地执行。 2&#xff09;个别用户工作&#xff1a;用户可能希望在某些特定的时…...

Visual Studio踩过的坑

统计Unity项目代码行数 编辑-查找和替换-在文件中查找 查找内容输入 b*[^:b#/].*$ 勾选“使用正则表达式” 文件类型留空 也有网友做了指定&#xff0c;供参考 !*\bin\*;!*\obj\*;!*\.*\*!*.meta;!*.prefab;!*.unity 打开Unity的项目 注意&#xff1a;只是看&#xff0…...

教程 | MySQL 基本指令指南(附MySQL软件包)

此前已经发布了安装教程安装教程&#xff0c;现在让我们来学习一下MySQL的基本指令。 一、数据库连接与退出 连接本地数据库 mysql -uroot -p # 输入后回车&#xff0c;按提示输入密码&#xff08;密码输入不可见&#xff09;若需隐藏密码显示&#xff0c;可使用&#xff1…...

企业数据集成案例:吉客云销售渠道到MySQL

测试-查询销售渠道信息-dange&#xff1a;吉客云数据集成到MySQL的技术案例分享 在企业的数据管理过程中&#xff0c;如何高效、可靠地实现不同系统之间的数据对接是一个关键问题。本次我们将分享一个具体的技术案例——通过轻易云数据集成平台&#xff0c;将吉客云中的销售渠…...

网络编程 day3

思维导图 以select函数模型为例 思维导图2 对应 epoll模型 应使用的函数 题目 使用epoll函数实现 两个客户端 通过服务器 实现聊天 思路 在原先代码基础上 实现 服务器 发向 客户端 使用客户端在服务器上的 套接字描述符 实现 客户端 接收 服务器…...

Excel 融合 deepseek

效果展示 代码实现 Function QhBaiDuYunAIReq(question, _Optional Authorization "Bearer ", _Optional Qhurl "https://qianfan.baidubce.com/v2/chat/completions")Dim XMLHTTP As ObjectDim url As Stringurl Qhurl 这里替换为你实际的URLDim postD…...

【论文笔记】Are Self-Attentions Effective for Time Series Forecasting? (NeurIPS 2024)

官方代码https://github.com/dongbeank/CATS Abstract 时间序列预测在多领域极为关键&#xff0c;Transformer 虽推进了该领域发展&#xff0c;但有效性尚存争议&#xff0c;有研究表明简单线性模型有时表现更优。本文聚焦于自注意力机制在时间序列预测中的作用&#xff0c;提…...

游戏手柄Type-c方案,支持一边充电一边传输数据

乐得瑞推出LDR6023SS&#xff0c;专门针对USB-C接口手机手柄方案&#xff0c;支持手机快充&#xff0c;支持任天堂游戏机&#xff0c;PS4等设备~同时支持手机充电跟数据传输 1、概述 LDR6023SS SSOP16 是乐得瑞科技针对 USB Type-C 标准中的 Bridge 设备而开发的双 USB-C DRP …...

2. 4 模块化JDK:JDK模块结构与核心模块

第3章&#xff1a;模块化JDK&#xff1a;JDK模块结构与核心模块 JDK 9 将自身拆分为一系列模块&#xff0c;彻底告别传统的“单一JAR&#xff08;如 rt.jar&#xff09;”模式。本章深入解析 JDK 的模块化架构、核心模块功能及开发者如何高效利用这些模块。 3.1 JDK 模块化设计…...

每日一题——缺失的第一个正整数

缺失的第一个正整数 题目描述进阶&#xff1a;数据范围&#xff1a; 示例示例 1示例 2示例 3 题解思路代码实现代码解释复杂度分析总结 题目描述 给定一个无重复元素的整数数组 nums&#xff0c;请你找出其中没有出现的最小的正整数。 进阶&#xff1a; 时间复杂度&#xff…...

CEF132 编译指南 MacOS 篇 - 基础开发工具安装实战 (二)

1. 引言 在 macOS 平台上编译 CEF132 之前&#xff0c;首要任务是搭建一个完善的开发环境。与 Windows 和 Linux 环境不同&#xff0c;macOS 的开发环境主要以 Xcode 为核心。本篇将作为 CEF132 编译指南系列的第二篇&#xff0c;详细指导读者如何在 macOS 系统上安装和配置 X…...

vi 是 Unix 和 Linux 系统中常用的文本编辑器

vi是 Unix 和 Linux 系统中常用的文本编辑器&#xff0c;它有几种不同的模式&#xff0c;其中最常用的是命令模式和插入模式。光标控制主要在命令模式下进行&#xff0c;以下是一些常用的vi命令来控制光标位置&#xff1a; • h,j,k,l&#xff1a;分别用于将光标向左、向下、向…...

SwanLab x verl:可视化LLM强化学习后训练教程

文章目录 介绍Verl和SwanLab1. 环境安装2. 使用方法3. 查看训练日志 介绍Verl和SwanLab verl 是一个灵活、高效且可用于生产环境的强化学习&#xff08;RL&#xff09;训练框架&#xff0c;专为大型语言模型&#xff08;LLMs&#xff09;的后训练设计。它由字节跳动火山引擎团…...

职场到校园,初心未改:我的2024年

Hi&#xff0c;大家好&#xff0c;我是几何心凉。 其实早就想写一份复盘文章&#xff0c;正好借助2024年度博客之星的评选机会&#xff0c;来写下这篇总结。回望过去&#xff0c;感慨颇多。自从加入CSDN平台以来&#xff0c;已经见证了许多博主的来去匆匆&#xff0c;各类创作…...

C++基础知识学习记录—引用

1、引用的概念 概念&#xff1a;引用相当于给变量取个别名 对引用进行操作与直接操作变量相同&#xff0c;注意引用类型与变量类型一致 #include<iostream> using namespace std; int main(){int a10;int& cite_a a;//操作引用cite_a 与操作变量a完全一样cout &l…...

AWS Savings Plans 监控与分析工具使用指南

一、背景介绍 1.1 什么是 Savings Plans? AWS Savings Plans 是一种灵活的定价模式,通过承诺持续使用一定金额的 AWS 服务来获得折扣价格。它可以帮助用户降低 AWS 使用成本,适用于 EC2、Fargate 和 Lambda 等服务。 1.2 为什么需要监控? 优化成本支出跟踪使用情况评估投…...

【AI学习】关于 DeepSeek-R1的几个流程图

遇见关于DeepSeek-R1的几个流程图&#xff0c;清晰易懂形象直观&#xff0c;记录于此。 流程图一 来自文章《Understanding Reasoning LLMs》&#xff0c; 文章链接&#xff1a;https://magazine.sebastianraschka.com/p/understanding-reasoning-llms?continueFlagaf07b1a0…...

C++ ——从C到C++

1、C的学习方法 &#xff08;1&#xff09;C知识点概念内容比较多&#xff0c;需要反复复习 &#xff08;2&#xff09;偏理论&#xff0c;有的内容不理解&#xff0c;可以先背下来&#xff0c;后续可能会理解更深 &#xff08;3&#xff09;学好编程要多练习&#xff0c;简…...

【图片转换PDF】多个文件夹里图片逐个批量转换成多个pdf软件,子文件夹单独合并转换,子文件夹单独批量转换,基于Py的解决方案

建筑设计公司在项目执行过程中&#xff0c;会产生大量的设计图纸、效果图、实景照片等图片资料。这些资料按照项目名称、阶段、专业等维度存放在多个文件夹和子文件夹中。 操作需求&#xff1a;为了方便内部管理和向客户交付完整的设计方案&#xff0c;公司需要将每个项目文件…...

前端学习之Flex布局

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Flex布局示例</title><style>.conta…...

游戏引擎学习第97天

回顾昨天并计划今天 在这期节目中&#xff0c;主要讲解了光照的概念&#xff0c;并进一步讨论了法线贴图光照的实现。节目的内容大致分为几个部分&#xff1a; 光照的基础概述&#xff1a;讨论了光的工作原理以及如何在编程图形时需要考虑光照问题。尽管这些概念并没有深入到…...

Mysql中存储引擎各种介绍以及应用场景、优缺点

概述 MySQL 提供了多种存储引擎&#xff0c;每种引擎有不同的特点和适用场景。以下是几种常见的 MySQL 存储引擎的详细介绍&#xff0c;包括它们的底层工作原理、优缺点&#xff0c;以及为什么 MySQL 默认选择某种引擎。 1. InnoDB 底层工作原理&#xff1a; 事务支持&#…...

PHP 运算符

PHP 运算符 概述 PHP 是一种广泛使用的开源服务器端脚本语言,它具有丰富的运算符集,这些运算符是编写 PHP 程序的基础。运算符用于执行各种数学、逻辑和比较操作。本篇文章将详细介绍 PHP 中常用的运算符,包括算术运算符、比较运算符、逻辑运算符、赋值运算符等。 算术运…...