当前位置: 首页 > news >正文

SwanLab x verl:可视化LLM强化学习后训练教程

文章目录

    • 介绍Verl和SwanLab
    • 1. 环境安装
    • 2. 使用方法
    • 3. 查看训练日志

介绍Verl和SwanLab

verl 是一个灵活、高效且可用于生产环境的强化学习(RL)训练框架,专为大型语言模型(LLMs)的后训练设计。它由字节跳动火山引擎团队开源,是 HybridFlow 论文的开源实现。verl目前已经被很多优秀的项目采用,如TinyZero、RAGEN、Logic R1等。

verl_logo 1

verl 具有以下特点,使其灵活且易于使用:

  1. 易于扩展的多样化 RL 算法:Hybrid 编程模型结合了单控制器和多控制器范式的优点,能够灵活表示并高效执行复杂的后训练数据流。用户只需几行代码即可构建 RL 数据流。
  2. 与现有 LLM 基础设施无缝集成的模块化 API:通过解耦计算和数据依赖,verl 能够与现有的 LLM 框架(如 PyTorch FSDP、Megatron-LM 和 vLLM)无缝集成。此外,用户可以轻松扩展到其他 LLM 训练和推理框架。
  3. 灵活的设备映射和并行化:支持将模型灵活地映射到不同的 GPU 组上,以实现高效的资源利用,并在不同规模的集群上具有良好的扩展性。
  4. 与流行的 HuggingFace 模型轻松集成:verl 能够方便地与 HuggingFace 模型进行集成。

verl 也具有以下优势,使其运行速度快:

  1. 最先进的吞吐量:通过无缝集成现有的 SOTA LLM 训练和推理框架,verl 实现了高生成和训练吞吐量。
  2. 基于 3D-HybridEngine 的高效 Actor 模型重分片:消除了内存冗余,并显著减少了在训练和生成阶段之间切换时的通信开销。

更多信息可参考如下链接

  • verl GitHub仓库链接: https://github.com/volcengine/verl
  • 官方文档: https://verl.readthedocs.io/en/latest/index.html
  • HybridFlow论文地址: https://arxiv.org/pdf/2409.19256v2

SwanLab 是一个开源的模型训练记录工具,常被称为"中国版 Weights&Biases + Tensorboard"。SwanLab面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。

image

你可以使用verl快速进行大模型强化学习训练,同时使用SwanLab进行实验跟踪与可视化。

1. 环境安装

需要环境:

  • Python: Version >= 3.9
  • CUDA: Version >= 12.1

参考verl官方文档安装:https://verl.readthedocs.io/en/latest/start/install.html

以及需要额外安装SwanLab

pip install -U swanlab

2. 使用方法

以verl官方文档的Post-train a LLM using PPO with GSM8K dataset为例。

你仅需要通过在实验的启动命令中,增加trainer.logger=['swanlab'],即可选择swanlab进行实验跟踪。

完整的测试命令如下:

PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \trainer.logger=['console','swanlab'] \data.train_files=$HOME/data/gsm8k/train.parquet \data.val_files=$HOME/data/gsm8k/test.parquet \data.train_batch_size=256 \data.val_batch_size=1312 \data.max_prompt_length=512 \data.max_response_length=256 \actor_rollout_ref.model.path=Qwen/Qwen2.5-0.5B-Instruct \actor_rollout_ref.actor.optim.lr=1e-6 \actor_rollout_ref.actor.ppo_mini_batch_size=64 \actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \actor_rollout_ref.rollout.tensor_model_parallel_size=1 \actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \critic.optim.lr=1e-5 \critic.model.path=Qwen/Qwen2.5-0.5B-Instruct \critic.ppo_micro_batch_size_per_gpu=4 \algorithm.kl_ctrl.kl_coef=0.001 \+trainer.val_before_train=False \trainer.default_hdfs_dir=null \trainer.n_gpus_per_node=1 \trainer.nnodes=1 \trainer.save_freq=10 \trainer.test_freq=10 \trainer.total_epochs=15 2>&1 | tee verl_demo.log

如果启动训练时你还未登陆SwanLab,会出现如下提示。

select

选择1、2则为使用云端跟踪模式,选择后根据引导输入官网的API即可实现在线跟踪。可以在线查看训练跟踪结果。选择3则不上传训练数据,采用离线跟踪。

当然,你也可以通过环境变量的方式登陆或者设置跟踪模式:

export SWANLAB_API_KEY=<你的登陆API>           # 设置在线跟踪模式API
export SWANLAB_LOG_DIR=<设置本地日志存储路径>    # 设置本地日志存储路径
export SWANLAB_MODE=<设置SwanLab的运行模式>     # 包含四种模式:cloud云端跟踪模式(默认)、cloud-only仅云端跟踪本地不保存文件、local本地跟踪模式、disabled完全不记录用于debug

3. 查看训练日志

完成登陆后会显示如下登陆信息:

track

运行进程,即可在SwanLab官网上查看训练日志:

remote

更多使用方法可以参考SwanLab查看使用结果


如果你使用本地看板模式,则可以通过如下命令打开本地看板

swanlab watch

更多详细可以参考SwanLab离线看板模式

服务器设置端口号可以查看离线看板端口号

相关文章:

SwanLab x verl:可视化LLM强化学习后训练教程

文章目录 介绍Verl和SwanLab1. 环境安装2. 使用方法3. 查看训练日志 介绍Verl和SwanLab verl 是一个灵活、高效且可用于生产环境的强化学习&#xff08;RL&#xff09;训练框架&#xff0c;专为大型语言模型&#xff08;LLMs&#xff09;的后训练设计。它由字节跳动火山引擎团…...

职场到校园,初心未改:我的2024年

Hi&#xff0c;大家好&#xff0c;我是几何心凉。 其实早就想写一份复盘文章&#xff0c;正好借助2024年度博客之星的评选机会&#xff0c;来写下这篇总结。回望过去&#xff0c;感慨颇多。自从加入CSDN平台以来&#xff0c;已经见证了许多博主的来去匆匆&#xff0c;各类创作…...

C++基础知识学习记录—引用

1、引用的概念 概念&#xff1a;引用相当于给变量取个别名 对引用进行操作与直接操作变量相同&#xff0c;注意引用类型与变量类型一致 #include<iostream> using namespace std; int main(){int a10;int& cite_a a;//操作引用cite_a 与操作变量a完全一样cout &l…...

AWS Savings Plans 监控与分析工具使用指南

一、背景介绍 1.1 什么是 Savings Plans? AWS Savings Plans 是一种灵活的定价模式,通过承诺持续使用一定金额的 AWS 服务来获得折扣价格。它可以帮助用户降低 AWS 使用成本,适用于 EC2、Fargate 和 Lambda 等服务。 1.2 为什么需要监控? 优化成本支出跟踪使用情况评估投…...

【AI学习】关于 DeepSeek-R1的几个流程图

遇见关于DeepSeek-R1的几个流程图&#xff0c;清晰易懂形象直观&#xff0c;记录于此。 流程图一 来自文章《Understanding Reasoning LLMs》&#xff0c; 文章链接&#xff1a;https://magazine.sebastianraschka.com/p/understanding-reasoning-llms?continueFlagaf07b1a0…...

C++ ——从C到C++

1、C的学习方法 &#xff08;1&#xff09;C知识点概念内容比较多&#xff0c;需要反复复习 &#xff08;2&#xff09;偏理论&#xff0c;有的内容不理解&#xff0c;可以先背下来&#xff0c;后续可能会理解更深 &#xff08;3&#xff09;学好编程要多练习&#xff0c;简…...

【图片转换PDF】多个文件夹里图片逐个批量转换成多个pdf软件,子文件夹单独合并转换,子文件夹单独批量转换,基于Py的解决方案

建筑设计公司在项目执行过程中&#xff0c;会产生大量的设计图纸、效果图、实景照片等图片资料。这些资料按照项目名称、阶段、专业等维度存放在多个文件夹和子文件夹中。 操作需求&#xff1a;为了方便内部管理和向客户交付完整的设计方案&#xff0c;公司需要将每个项目文件…...

前端学习之Flex布局

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Flex布局示例</title><style>.conta…...

游戏引擎学习第97天

回顾昨天并计划今天 在这期节目中&#xff0c;主要讲解了光照的概念&#xff0c;并进一步讨论了法线贴图光照的实现。节目的内容大致分为几个部分&#xff1a; 光照的基础概述&#xff1a;讨论了光的工作原理以及如何在编程图形时需要考虑光照问题。尽管这些概念并没有深入到…...

Mysql中存储引擎各种介绍以及应用场景、优缺点

概述 MySQL 提供了多种存储引擎&#xff0c;每种引擎有不同的特点和适用场景。以下是几种常见的 MySQL 存储引擎的详细介绍&#xff0c;包括它们的底层工作原理、优缺点&#xff0c;以及为什么 MySQL 默认选择某种引擎。 1. InnoDB 底层工作原理&#xff1a; 事务支持&#…...

PHP 运算符

PHP 运算符 概述 PHP 是一种广泛使用的开源服务器端脚本语言,它具有丰富的运算符集,这些运算符是编写 PHP 程序的基础。运算符用于执行各种数学、逻辑和比较操作。本篇文章将详细介绍 PHP 中常用的运算符,包括算术运算符、比较运算符、逻辑运算符、赋值运算符等。 算术运…...

Vue全流程--Vue3.0与Vue2.0响应式原理对比

Vue2中数据的响应式 需要使用Vue.set这么一个api&#xff0c;修改数据 需要使用Vue.delete这么一个api&#xff0c;删除数据 数据代理这个当面的理解可以看看我前面文章Vue全流程--数据代理的理解以及在Vue中的应用-CSDN博客 Vue3中数据的响应式 Vue3使用proxy这个api实现…...

C语言学习笔记:子函数的调用实现各个位的累加和

在C语言程序学习之初&#xff0c;我们都会学习如何打印 hello world&#xff0c;在学习时我们知道了int main&#xff08;&#xff09;是主函数&#xff0c;程序从main函数开始执行&#xff0c;这是流程控制的一部分内容。在主函数中我们想要实现一些功能&#xff0c;比如求各个…...

【大模型】本地部署DeepSeek-R1:8b大模型及搭建Open-WebUI交互页面

本地部署DeepSeek-R1:8b大模型 一、摘要及版本选择说明1.1 摘要1.2 版本选择 二、下载并安装Ollama三、运行DeepSeek-R1:8b大模型四、安装Open WebUI增强交互体验五、关闭Ollama开机自动启动六、DeepSeek大模型启停步骤 一、摘要及版本选择说明 1.1 摘要 作为一名对 AI 和生成…...

Python 调用 Stabilityai API在本地生成图像

Python 调用 Stabilityai API在本地生成图像 摘要功能 代码结构关键技术代码下载立即体验 摘要 本程序利用硅基流动目前的免费 stabilityai/stable-diffusion-2-1 模型API&#xff0c;生成图像并下载到本地&#xff0c;用户可以通过输入描述性提示词来获取相应的图像。使用Pyt…...

Python3中异常处理:try-finally语句的示例

一. 简介 前面一篇文章简单学习了 try-finally语句结构&#xff0c;执行过程、以及使用场景。文章如下&#xff1a; Python3中异常处理&#xff1a;try-finally语句-CSDN博客 本文写一些简单的示例来继续学习 try-finally语句的使用。 二. Python3中异常处理&#xff1a;try…...

Lua限流器的3种写法

学而不思则罔&#xff0c;思而不学则殆 引言 上篇文章讲解了Lua脚本&#xff0c;事务和Pipline之间的使用方式和性能差距&#xff0c;本篇文章将聚焦Lua脚本&#xff0c;我将用三种写法来展现如何实现一个Redis限流器 固定窗口限流 固定窗口限流也是最简单的限流算法&#x…...

基于 GEE 利用插值方法填补缺失影像

目录 1 完整代码 2 运行结果 利用GEE合成NDVI时&#xff0c;如果研究区较大&#xff0c;一个月的影像覆盖不了整个研究区&#xff0c;就会有缺失的地方&#xff0c;还有就是去云之后&#xff0c;有云量的地区变成空值。 所以今天来用一种插值的方法来填补缺失的影像&#xf…...

linux部署ollama+deepseek+dify

Ollama 下载源码 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz启动 export OLLAMA_HOST0.0.0.0:11434 ollama serve访问ip:11434看到即成功 Ollama is running 手动安装deepseek…...

在微服务中,如何使用feign在各个微服务中进行远程调用

在微服务中&#xff0c;如何使用feign在不同微服务中进行远程调用 在微服务中&#xff0c;如何使用feign在不同微服务中进行远程调用 步骤&#xff1a; 第一步&#xff1a; 引入feign依赖 <dependency><groupId>org.springframework.cloud</groupId><…...

Kafka中的KRaft算法

我们之前的Kafka值依赖于Zookeeper注册中心来启动的&#xff0c;往里面注册我们节点信息 Kafka是什么时候不依赖Zookeeper节点了 在Kafka2.8.0开始就可以不依赖Zookeeper了 可以用KRaft模式代替Zookeeper管理Kafka集群 KRaft Controller和KRaft Leader的关系 两者关系 Lea…...

vue3 -- 集成 amap(高德地图)

🍍效果 本文介绍了如何在 Vue 3 项目中集成高德地图(AMap),并使用 PoiPicker 实现地点搜索功能。 文章首先通过 AMapLoader 异步加载高德地图 API,并初始化 Map 实例。同时,借助 AMapUI 组件库引入 PoiPicker,绑定搜索输入框,实现地点选择功能。PoiPicker 监听用户的 …...

基于用户的协同过滤算法推荐

import numpy as np 计算用户之间的相似度&#xff08;这里使用余弦相似度&#xff09; def cosine_similarity(user1, user2): numerator np.dot(user1, user2) denominator np.linalg.norm(user1) * np.linalg.norm(user2) return numerator / denominator if denominato…...

4.python+flask+SQLAlchemy+达梦数据库

前提 1.liunx Centos7上通过docker部署了达梦数据库。从达梦官网下载的docker镜像。(可以参考前面的博文) 2.windows上通过下载x86,win64位的达梦数据库,只安装客户端,不安装服务端。从达梦官网下载达梦数据库windows版。(可以参考前面的博文) 这样就可以用windows的达…...

神经网络常见激活函数 4-LeakyReLU函数

文章目录 LeakyReLU函数导函数函数和导函数图像优缺点pytorch中的LeakyReLU函数tensorflow 中的LeakyReLU函数 LeakyReLU LeakyReLU&#xff1a; Leaky Rectified Linear Unit 函数导函数 LeakyReLU函数 L e a k y R e L U { x x > 0 p x x < 0 p ∈ ( 0 , 1 ) \rm …...

PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架

源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发&#xff0c;可以打包成APP&#xff08;非H5封壳&#xff09;H5&#xff0c;接其他平台支付通道&#xff0c;前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG&#xff0c;修复无…...

单例模式详解(Java)

单例模式详解(Java) 一、引言 1.1 概述单例模式的基本概念和重要性 单例模式是一种常用的软件设计模式,它确保一个类在整个应用程序中只有一个实例,并提供一个全局访问点来访问这个唯一实例。这种模式在资源管理、配置设置和日志记录等方面非常有用,因为它们通常只需要…...

2025年度Python最新整理的免费股票数据API接口

在2025年这个充满变革与机遇的年份&#xff0c;随着金融市场的蓬勃发展&#xff0c;量化交易逐渐成为了投资者们追求高效、精准交易的重要手段。而在这个领域中&#xff0c;一个实时、准确、稳定的股票API无疑是每位交易者梦寐以求的工具。 现将200多个实测可用且免费的专业股票…...

2.10学习总结

今天接着看了数据结构&#xff0c;但是跟指针有关的看不懂&#xff08;万恶的指针&#xff09;&#xff0c;写了考试的补题。 #include <stdio.h> #include <stdlib.h> int a[1000005]; int main() {int n,i,x0;scanf("%d",&n);for(i1;i<n;i){x;i…...

原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力

原生鸿蒙版小艺APP接入DeepSeek-R1&#xff0c;为HarmonyOS应用开发注入新活力 在科技飞速发展的当下&#xff0c;人工智能与操作系统的融合正深刻改变着我们的数字生活。近日&#xff0c;原生鸿蒙版小艺APP成功接入DeepSeek-R1&#xff0c;这一突破性进展不仅为用户带来了更智…...