基于 GEE 利用插值方法填补缺失影像
目录
1 完整代码
2 运行结果

利用GEE合成NDVI时,如果研究区较大,一个月的影像覆盖不了整个研究区,就会有缺失的地方,还有就是去云之后,有云量的地区变成空值。
所以今天来用一种插值的方法来填补缺失的影像,以NDVI为例,主要实现原理其实就是用前后两个月的NDVI的均值进行填补。
1 完整代码
var roi = table;
Map.centerObject(roi,7)
var styling = {color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(styling),{},"geometry")
var img_normalize = function(img){ var minMax = img.reduceRegion({ reducer:ee.Reducer.minMax(), geometry: roi, scale: 30, maxPixels: 10e13, tileScale: 16 })
var year = img.get('year')
var normalize = ee.ImageCollection.fromImages( img.bandNames().map(function(name){ name = ee.String(name); var band = img.select(name); return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max')))); }) ).toBands().rename(img.bandNames()); return normalize;}
function maskL457sr(image) {//l57去云// Bit 0 - Fill// Bit 1 - Dilated Cloud// Bit 2 - Unused// Bit 3 - Cloud// Bit 4 - Cloud Shadowvar qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);var saturationMask = image.select('QA_RADSAT').eq(0);// Apply the scaling factors to the appropriate bands.var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBand = image.select('ST_B6').multiply(0.00341802).add(149.0);// Replace the original bands with the scaled ones and apply the masks.return image.addBands(opticalBands, null, true).addBands(thermalBand, null, true).updateMask(qaMask).updateMask(saturationMask);
}
/*function maskL8sr(image) {// Bit 0 - Fill// Bit 1 - Dilated Cloud// Bit 2 - Cirrus// Bit 3 - Cloud// Bit 4 - Cloud Shadowvar qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);var saturationMask = image.select('QA_RADSAT').eq(0);// Apply the scaling factors to the appropriate bands.var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);// Replace the original bands with the scaled ones and apply the masks.return image.addBands(opticalBands, null, true).addBands(thermalBands, null, true).updateMask(qaMask).updateMask(saturationMask);
}*/
var imageCollection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2').filterBounds(roi);//1111111
var monthCount = ee.List.sequence(0, 11);// 通过图像收集,生成每月NDVI中值图像
var composites = ee.ImageCollection.fromImages(monthCount.map(function(m) {var startMonth = 1; // 从1月开始var startYear = ee.Number(2000); // 1993-1var month = ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').get('month');var year = ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').get('year')// 按年筛选,然后按月筛选var filtered = imageCollection.filter(ee.Filter.calendarRange({start: year.subtract(1), // 过去两年的平均数end: year,field: 'year'})).filter(ee.Filter.calendarRange({start: month,field: 'month'}));// mask for clouds and then take the median///var composite = filtered.map(maskL457sr).median().clip(roi);return composite.normalizedDifference(['SR_B4', 'SR_B3']).rename('NDVI').set('month', ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month')).set('system:time_start', ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').millis());
}));
print(composites);
var stackCollection = function(collection) {// 创建一个初始图像.var first = ee.Image(collection.first()).select([]);// Write a function that appends a band to an image.var appendBands = function(image, previous) {return ee.Image(previous).addBands(image);};return ee.Image(collection.iterate(appendBands, first));
};
var compos = stackCollection(composites);
print('插值前', compos);// 用上个月和下个月的平均值替换被遮挡的像素
var replacedVals = composites.map(function(image){var currentDate = ee.Date(image.get('system:time_start'));var meanImage = composites.filterDate(currentDate.advance(-2,'month'), currentDate.advance(2, 'month')).mean();//33333333333333333333333max min median// 替换所有被屏蔽的值return meanImage.where(image, image);
});// 将ImageCollection堆叠成一个多波段的光栅,以便下载
var stackCollection = function(collection) {// 创建一个初始图像.var first = ee.Image(collection.first()).select([]);// Write a function that appends a band to an image.var appendBands = function(image, previous) {return ee.Image(previous).addBands(image);};return ee.Image(collection.iterate(appendBands, first));
};
var stacked = stackCollection(replacedVals);
print('stacked image', stacked);
var Vis = {min: -1,max: 1.0,palette: ['FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901','66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01','012E01', '011D01', '011301'],};
Map.addLayer(compos.select(6), Vis, '插值前');
// .0-11 分别代表1-12个月
Map.addLayer(stacked.select(6), Vis, 'NDVI');//555555555Export.image.toDrive({image: stacked.select(0),//选择导出影像的波段0-11 分别代表1-12个月description: 'NDVI',//选择导出云盘的文件夹名称crs: "EPSG:4326",//坐标系scale: 30,//空间分辨率region: roi,//研究区maxPixels: 1e13,//最大像元个数folder: 'NDVI'
});
2 运行结果
可以看出,填补的效果还是非常明显的。
相关文章:
基于 GEE 利用插值方法填补缺失影像
目录 1 完整代码 2 运行结果 利用GEE合成NDVI时,如果研究区较大,一个月的影像覆盖不了整个研究区,就会有缺失的地方,还有就是去云之后,有云量的地区变成空值。 所以今天来用一种插值的方法来填补缺失的影像…...
linux部署ollama+deepseek+dify
Ollama 下载源码 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz启动 export OLLAMA_HOST0.0.0.0:11434 ollama serve访问ip:11434看到即成功 Ollama is running 手动安装deepseek…...
在微服务中,如何使用feign在各个微服务中进行远程调用
在微服务中,如何使用feign在不同微服务中进行远程调用 在微服务中,如何使用feign在不同微服务中进行远程调用 步骤: 第一步: 引入feign依赖 <dependency><groupId>org.springframework.cloud</groupId><…...
Kafka中的KRaft算法
我们之前的Kafka值依赖于Zookeeper注册中心来启动的,往里面注册我们节点信息 Kafka是什么时候不依赖Zookeeper节点了 在Kafka2.8.0开始就可以不依赖Zookeeper了 可以用KRaft模式代替Zookeeper管理Kafka集群 KRaft Controller和KRaft Leader的关系 两者关系 Lea…...
vue3 -- 集成 amap(高德地图)
🍍效果 本文介绍了如何在 Vue 3 项目中集成高德地图(AMap),并使用 PoiPicker 实现地点搜索功能。 文章首先通过 AMapLoader 异步加载高德地图 API,并初始化 Map 实例。同时,借助 AMapUI 组件库引入 PoiPicker,绑定搜索输入框,实现地点选择功能。PoiPicker 监听用户的 …...
基于用户的协同过滤算法推荐
import numpy as np 计算用户之间的相似度(这里使用余弦相似度) def cosine_similarity(user1, user2): numerator np.dot(user1, user2) denominator np.linalg.norm(user1) * np.linalg.norm(user2) return numerator / denominator if denominato…...
4.python+flask+SQLAlchemy+达梦数据库
前提 1.liunx Centos7上通过docker部署了达梦数据库。从达梦官网下载的docker镜像。(可以参考前面的博文) 2.windows上通过下载x86,win64位的达梦数据库,只安装客户端,不安装服务端。从达梦官网下载达梦数据库windows版。(可以参考前面的博文) 这样就可以用windows的达…...
神经网络常见激活函数 4-LeakyReLU函数
文章目录 LeakyReLU函数导函数函数和导函数图像优缺点pytorch中的LeakyReLU函数tensorflow 中的LeakyReLU函数 LeakyReLU LeakyReLU: Leaky Rectified Linear Unit 函数导函数 LeakyReLU函数 L e a k y R e L U { x x > 0 p x x < 0 p ∈ ( 0 , 1 ) \rm …...
PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架
源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发,可以打包成APP(非H5封壳)H5,接其他平台支付通道,前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG,修复无…...
单例模式详解(Java)
单例模式详解(Java) 一、引言 1.1 概述单例模式的基本概念和重要性 单例模式是一种常用的软件设计模式,它确保一个类在整个应用程序中只有一个实例,并提供一个全局访问点来访问这个唯一实例。这种模式在资源管理、配置设置和日志记录等方面非常有用,因为它们通常只需要…...
2025年度Python最新整理的免费股票数据API接口
在2025年这个充满变革与机遇的年份,随着金融市场的蓬勃发展,量化交易逐渐成为了投资者们追求高效、精准交易的重要手段。而在这个领域中,一个实时、准确、稳定的股票API无疑是每位交易者梦寐以求的工具。 现将200多个实测可用且免费的专业股票…...
2.10学习总结
今天接着看了数据结构,但是跟指针有关的看不懂(万恶的指针),写了考试的补题。 #include <stdio.h> #include <stdlib.h> int a[1000005]; int main() {int n,i,x0;scanf("%d",&n);for(i1;i<n;i){x;i…...
原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力
原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力 在科技飞速发展的当下,人工智能与操作系统的融合正深刻改变着我们的数字生活。近日,原生鸿蒙版小艺APP成功接入DeepSeek-R1,这一突破性进展不仅为用户带来了更智…...
从Word里面用VBA调用NVIDIA的免费DeepSeekR1
看上去能用而已。 选中的文字作为输入,运行对应的宏即可;会先MSGBOX提示一下,然后相关内容追加到word文档中。 需要自己注册生成好用的apikey Option ExplicitSub DeepSeek()Dim selectedText As StringDim apiKey As StringDim response A…...
【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题
文章目录 ??Redis的分布式锁??误删问题 ??解决方法??代码实现 ??原子性问题 ??Lua脚本 ?利用Java代码调用Lua脚本改造分布式锁??代码实现 ??Redis的分布式锁 Redis的分布式锁是通过利用Redis的原子操作和特性来实现的。在分布式环境中,多个应用…...
【JVM详解三】垃圾回收机制
一、对象是否存活 强引用:Object obj new Object(); 只要强引用还在,垃圾收集器永远不会回收掉被引用的对象。在不用对象的时将引用赋值为 null,能够帮助垃圾回收器回收对象。比如 ArrayList 的 clear() 方法实现。软引用(SoftRe…...
MySQL的字符集(Character Set)和排序规则(Collation)
MySQL的字符集(Character Set)和排序规则(Collation) 字符集(Character Set)和排序规则(Collation)是数据库中处理文本数据的两个核心概念,二者紧密相关但作用不同。 1…...
2025影视泛目录站群程序设计_源码二次开发新版本无缓存刷新不变实现原理
1. 引言 本设站群程序计书旨在详细阐述苹果CMS泛目录的创新设计与实现,介绍无缓存刷新技术、数据统一化、局部URL控制及性能优化等核心功能,以提升网站访问速度和用户体验。 2. 技术概述 2.1 无缓存刷新技术 功能特点: 内容不变性&#x…...
常用的python库-安装与使用
常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…...
array_walk. array_map. array_filter
1. array_walk 函数 array_walk 用于遍历数组并对每个元素执行回调函数。它不会受到数组内部指针位置的影响,会遍历整个数组。回调函数接收的前两个参数分别是元素的值和键名,如果有第三个参数,则数组所有的值都共用这个参数。 示例代码&am…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
