当前位置: 首页 > news >正文

linux部署ollama+deepseek+dify

Ollama

  1. 下载源码
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
  1. 启动
export OLLAMA_HOST=0.0.0.0:11434
ollama serve
  1. 访问ip:11434看到即成功

Ollama is running

手动安装deepseek1.5b

https://modelscope.cn/

  1. 下载GGUF文件
    在这里插入图片描述
    在这里插入图片描述
  2. 将GGUF上传到服务器,同目录下创建模型文件dsr1-1.5b.txt,注意第一句FROM后是GGUF的文件名
FROM DeepSeek-R1-Distill-Qwen-1.5B-Q8_0.gguf    
PARAMETER temperature 0.7                       
PARAMETER top_p 0.95
PARAMETER top_k 40
PARAMETER repeat_penalty 1.1
PARAMETER min_p 0.05
PARAMETER num_ctx 1024                 
PARAMETER num_thread 4                  
PARAMETER num_gpu 8                     # 设置对话终止符
PARAMETER stop "<|begin▁of▁sentence|>"
PARAMETER stop "<|end▁of▁sentence|>"
PARAMETER stop "<|User|>"
PARAMETER stop "<|Assistant|>"SYSTEM """
"""TEMPLATE """{{- if .System }}{{ .System }}{{ end }} 
{{- range $i, $_ := .Messages }} 
{{- $last := eq (len (slice $.Messages $i)) 1}}
{{- if eq .Role "user" }}<|User|>{{ .Content }}
{{- else if eq .Role "assistant" }}<|Assistant|>{{ .Content }}{{- if not $last }}<|end▁of▁sentence|>{{- end }}
{{- end }}
{{- if and $last (ne .Role "assistant") }}<|Assistant|>{{- end }} 
{{- end }}"""

3.** ollama执行命令导入模型,可以查看模型导入成功**

ollama create deepseek-r1:1.5b -f dsr1-1.5b.txt
ollama list
  1. 直接运行1.5b,可以进行简单的问题,模型部署成功
ollama run deepseek-r1:1.5b

docker 安装dify

详情查看官方文档,https://docs.dify.ai/zh-hans/getting-started/install-self-hosted/docker-compose

难点一:需要注意的是,docker compose up -d容器启动不成功的话需要根据具体情况修改部分配置。

举例:本机安装了nginx,非docker部署的,dify 的docker compose拉取的nginx出现了端口冲突,需要修改difynginx的端口号。
将

  1. 将docker目录下的.env.example 中的80 443 修改为 8088和8443,再次执行cp .env.example .env,将实际修改同步到.env文件。
  2. docker-compose文件修改
    将docker-compose把此文件的所有443修改为8443 以及所有443前后行的80 修改为8088,之后再次执行docker compose up -d。全部启动成功后,即可访问dify,此时dify不是教程上的ip/install了,需要ip:8088/install访问,nginx变了你懂的。

难点二:镜像拉不下来

为何linux无法使用curl一键拉取ollama呢是不是,ollama又为何不可以直接pull模型呢是不是,所有dify拉不下来镜像也是应该的。
window的dify必须使用wsl的linux环境去部署,不然可能会出现莫名的问题,wsl下是很顺利地,安装dify后,将镜像打包成tar。
在这里插入图片描述
如图所示,全部手动上传服务器,然后load -i导入进去即可。然后执行docker compose up -d。
docker compose up -d执行不成功的话,docker-compose down可以进行删除。

dify知识库的话还需要一个嵌入模型,也同deepseek一起导入ollama即可。

在这里插入图片描述

相关文章:

linux部署ollama+deepseek+dify

Ollama 下载源码 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz启动 export OLLAMA_HOST0.0.0.0:11434 ollama serve访问ip:11434看到即成功 Ollama is running 手动安装deepseek…...

在微服务中,如何使用feign在各个微服务中进行远程调用

在微服务中&#xff0c;如何使用feign在不同微服务中进行远程调用 在微服务中&#xff0c;如何使用feign在不同微服务中进行远程调用 步骤&#xff1a; 第一步&#xff1a; 引入feign依赖 <dependency><groupId>org.springframework.cloud</groupId><…...

Kafka中的KRaft算法

我们之前的Kafka值依赖于Zookeeper注册中心来启动的&#xff0c;往里面注册我们节点信息 Kafka是什么时候不依赖Zookeeper节点了 在Kafka2.8.0开始就可以不依赖Zookeeper了 可以用KRaft模式代替Zookeeper管理Kafka集群 KRaft Controller和KRaft Leader的关系 两者关系 Lea…...

vue3 -- 集成 amap(高德地图)

🍍效果 本文介绍了如何在 Vue 3 项目中集成高德地图(AMap),并使用 PoiPicker 实现地点搜索功能。 文章首先通过 AMapLoader 异步加载高德地图 API,并初始化 Map 实例。同时,借助 AMapUI 组件库引入 PoiPicker,绑定搜索输入框,实现地点选择功能。PoiPicker 监听用户的 …...

基于用户的协同过滤算法推荐

import numpy as np 计算用户之间的相似度&#xff08;这里使用余弦相似度&#xff09; def cosine_similarity(user1, user2): numerator np.dot(user1, user2) denominator np.linalg.norm(user1) * np.linalg.norm(user2) return numerator / denominator if denominato…...

4.python+flask+SQLAlchemy+达梦数据库

前提 1.liunx Centos7上通过docker部署了达梦数据库。从达梦官网下载的docker镜像。(可以参考前面的博文) 2.windows上通过下载x86,win64位的达梦数据库,只安装客户端,不安装服务端。从达梦官网下载达梦数据库windows版。(可以参考前面的博文) 这样就可以用windows的达…...

神经网络常见激活函数 4-LeakyReLU函数

文章目录 LeakyReLU函数导函数函数和导函数图像优缺点pytorch中的LeakyReLU函数tensorflow 中的LeakyReLU函数 LeakyReLU LeakyReLU&#xff1a; Leaky Rectified Linear Unit 函数导函数 LeakyReLU函数 L e a k y R e L U { x x > 0 p x x < 0 p ∈ ( 0 , 1 ) \rm …...

PHP盲盒商城系统源码 晒图+免签+短信验证+在线回收 thinkphp框架

源码介绍 PHP盲盒商城系统源码 晒图免签短信验证在线回收 thinkphp框架 源码前端uniapp开发&#xff0c;可以打包成APP&#xff08;非H5封壳&#xff09;H5&#xff0c;接其他平台支付通道&#xff0c;前后端全开源 H5盲盒首页可以直接开盒新UI 修复优化BUG&#xff0c;修复无…...

单例模式详解(Java)

单例模式详解(Java) 一、引言 1.1 概述单例模式的基本概念和重要性 单例模式是一种常用的软件设计模式,它确保一个类在整个应用程序中只有一个实例,并提供一个全局访问点来访问这个唯一实例。这种模式在资源管理、配置设置和日志记录等方面非常有用,因为它们通常只需要…...

2025年度Python最新整理的免费股票数据API接口

在2025年这个充满变革与机遇的年份&#xff0c;随着金融市场的蓬勃发展&#xff0c;量化交易逐渐成为了投资者们追求高效、精准交易的重要手段。而在这个领域中&#xff0c;一个实时、准确、稳定的股票API无疑是每位交易者梦寐以求的工具。 现将200多个实测可用且免费的专业股票…...

2.10学习总结

今天接着看了数据结构&#xff0c;但是跟指针有关的看不懂&#xff08;万恶的指针&#xff09;&#xff0c;写了考试的补题。 #include <stdio.h> #include <stdlib.h> int a[1000005]; int main() {int n,i,x0;scanf("%d",&n);for(i1;i<n;i){x;i…...

原生鸿蒙版小艺APP接入DeepSeek-R1,为HarmonyOS应用开发注入新活力

原生鸿蒙版小艺APP接入DeepSeek-R1&#xff0c;为HarmonyOS应用开发注入新活力 在科技飞速发展的当下&#xff0c;人工智能与操作系统的融合正深刻改变着我们的数字生活。近日&#xff0c;原生鸿蒙版小艺APP成功接入DeepSeek-R1&#xff0c;这一突破性进展不仅为用户带来了更智…...

从Word里面用VBA调用NVIDIA的免费DeepSeekR1

看上去能用而已。 选中的文字作为输入&#xff0c;运行对应的宏即可&#xff1b;会先MSGBOX提示一下&#xff0c;然后相关内容追加到word文档中。 需要自己注册生成好用的apikey Option ExplicitSub DeepSeek()Dim selectedText As StringDim apiKey As StringDim response A…...

【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题

文章目录 ??Redis的分布式锁??误删问题 ??解决方法??代码实现 ??原子性问题 ??Lua脚本 ?利用Java代码调用Lua脚本改造分布式锁??代码实现 ??Redis的分布式锁 Redis的分布式锁是通过利用Redis的原子操作和特性来实现的。在分布式环境中&#xff0c;多个应用…...

【JVM详解三】垃圾回收机制

一、对象是否存活 强引用&#xff1a;Object obj new Object(); 只要强引用还在&#xff0c;垃圾收集器永远不会回收掉被引用的对象。在不用对象的时将引用赋值为 null&#xff0c;能够帮助垃圾回收器回收对象。比如 ArrayList 的 clear() 方法实现。软引用&#xff08;SoftRe…...

MySQL的字符集(Character Set)和排序规则(Collation)

MySQL的字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation&#xff09; 字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation&#xff09;是数据库中处理文本数据的两个核心概念&#xff0c;二者紧密相关但作用不同。 1…...

2025影视泛目录站群程序设计_源码二次开发新版本无缓存刷新不变实现原理

1. 引言 本设站群程序计书旨在详细阐述苹果CMS泛目录的创新设计与实现&#xff0c;介绍无缓存刷新技术、数据统一化、局部URL控制及性能优化等核心功能&#xff0c;以提升网站访问速度和用户体验。 2. 技术概述 2.1 无缓存刷新技术 功能特点&#xff1a; 内容不变性&#x…...

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…...

array_walk. array_map. array_filter

1. array_walk 函数 array_walk 用于遍历数组并对每个元素执行回调函数。它不会受到数组内部指针位置的影响&#xff0c;会遍历整个数组。回调函数接收的前两个参数分别是元素的值和键名&#xff0c;如果有第三个参数&#xff0c;则数组所有的值都共用这个参数。 示例代码&am…...

数据仓库和商务智能:洞察数据,驱动决策

在数据管理的众多领域中&#xff0c;数据仓库和商务智能&#xff08;BI&#xff09;是将数据转化为洞察力、支持决策制定的关键环节。它们通过整合、存储和分析数据&#xff0c;帮助组织更好地理解业务运营&#xff0c;预测市场趋势&#xff0c;从而制定出更明智的战略。今天&a…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...