当前位置: 首页 > news >正文

【AI学习】关于 DeepSeek-R1的几个流程图

遇见关于DeepSeek-R1的几个流程图,清晰易懂形象直观,记录于此。

流程图一

来自文章《Understanding Reasoning LLMs》,
文章链接:https://magazine.sebastianraschka.com/p/understanding-reasoning-llms?continueFlag=af07b1a0954d90469bc6f6584075da3b

在这里插入图片描述
《以 DeepSeek R1 为例学习“推理型大语言模型》是翻译版。摘录其中对流程的描述:

  1. DeepSeek-R1-Zero
    该模型基于 DeepSeek 在 2024 年 12 月发布的 671B 规模预训练基础模型 DeepSeek-V3。团队对其进行强化学习(RL)训练,并使用了两类奖励作为回报信号。由于没有进行监督微调(SFT),也就是常见“RLHF”流程中的 SFT 步骤被跳过,所以他们把这称为“冷启动”的方式(Cold Start)。
  2. DeepSeek-R1
    这是 DeepSeek 的主力推理模型,也是在 DeepSeek-R1-Zero 的基础上进一步引入额外的 SFT 阶段与更多轮的 RL 训练而成,性能优于“冷启动”的 R1-Zero。
  3. DeepSeek-R1-Distill
    他们还用前述训练过程中的 SFT 数据来微调了 Qwen 和 Llama 等较小模型,以提升这些模型的推理能力。虽然他们把这个过程称为“蒸馏”,但并不是传统意义上的知识蒸馏,更像是用大模型的输出数据去监督微调(SFT)小模型(包括 Llama 8B 和 70B,以及 Qwen 1.5B–30B)。

流程图二

下面的流程图非常详细,出处不详
在这里插入图片描述

Hugging Face的复刻流程图

Hugging Face推出Open R1,这是对DeepSeek-R1的开源复现项目,复刻流程如下:
在这里插入图片描述

图解DeepSeek-R1

来自@爱可可-爱生活
【一图解读DeepSeek-R1】
穿越DeepSeek的技术进化史,让我们看到了一个令人振奋的AI发展轨迹:从无监督起步,到结构化优化,再到轻量级蒸馏,每一步都彰显着AI大众化的曙光。
DeepSeek-R1-Zero像个天赋异禀的孩子,通过GRPO这个高效的强化学习框架,自主掌握了思考的艺术。它展现出自反思和结构化思维的能力,虽然初期表达还略显生涩,但这正是“会走”之前必经的阶段。
随后,DeepSeek-R1借助精心设计的Chain-of-Thought数据集进行“冷启动”训练,就像接受了系统的教育,不仅改善了表达,更习得了清晰的推理步骤。通过强化学习和巧妙的奖励机制,它在数学、编程等领域的表现更趋近人类思维。
最令人瞩目的是蒸馏技术的突破它让我们看到了AI普及的希望。就像优秀导师能让学生青出于蓝,DeepSeek团队成功将大模型的智慧浓缩进更小的架构(如Qwen-7B和Llama-8B),几乎不损失性能。这意味着,高质量的AI助手将可以运行在更普及的设备上,真正服务于图书推荐、在线辅导等实际应用场景。
在这里插入图片描述

通俗解读 DeepSeek-R1 训练过程

在这里插入图片描述

来自@爱可可-爱生活
【通俗解读 DeepSeek-R1 训练过程】
DeepSeek-R1 通过创新性地结合强化学习和监督学习,以低成本实现了与现有顶尖模型相当的推理能力,挑战了传统AI训练范式,并引发了对GPU市场未来需求的重新思考。

  • DeepSeek-R1的成本效益挑战英伟达的霸权地位: DeepSeek-R1 即使GPU资源有限,也能以极低的成本达到与OpenAI模型相当的性能,导致英伟达股价大幅下跌。这挑战了以往认为大规模GPU资源对于高级AI开发至关重要的传统观点。
  • 杰文斯悖论与GPU需求的未来: 文章探讨了杰文斯悖论的适用性,认为AI训练效率的提高可能导致GPU的整体需求增加,而不是减少。然而,文章也提出了反驳意见,认为转向微调和开源模型可能会降低对高端GPU的需求。
  • DeepSeek-R1非常规的训练方法: DeepSeek-R1采用了一种与传统的监督微调方法不同的新训练方法。它广泛利用强化学习(RL),首先使用DeepSeek-R1-Zero(纯RL),然后结合RL和监督微调的多阶段过程进行改进。
  • DeepSeek-R1-Zero:用于推理的纯强化学习: DeepSeek-R1-Zero作为DeepSeek-R1的前身,展示了纯强化学习在增强LLM推理能力方面的潜力,在各种基准测试中取得了最先进的(SOTA)性能。这与直觉相反,因为强化学习通常被认为在这种用途上不如监督学习有效。
  • DeepSeek-R1的多阶段训练过程: DeepSeek-R1的训练包括多阶段过程:冷启动微调以提高可读性,面向推理的强化学习,使用合成和非推理数据集进行微调,最后是结合人类偏好的强化学习。这种分层方法对模型的成功至关重要。
  • 强化学习在推理中的局限性: 作者对RL在提高一般推理能力方面的无限潜力表示怀疑,认为它可能主要增强对推理模式的记忆,而不是真正的理解。这意味着仅通过强化学习所能实现的性能提升可能存在上限。
  • 通过强化学习生成合成数据集: 一个关键创新是利用强化学习训练的模型生成大型合成推理数据集,然后用于监督微调。这巧妙地利用了RL和监督学习的优势。

思考:

  • 强化学习的潜力与局限: 强化学习在特定任务上的高效性令人印象深刻,但其在通用推理能力上的提升可能存在瓶颈,需要结合其他方法才能发挥最大效用。
  • 数据合成与模型训练: 利用强化学习模型生成合成数据,再结合监督学习进行微调,是一种值得借鉴的有效策略,可以降低数据标注成本并提升模型性能。
  • 多阶段训练的价值: DeepSeek-R1的多阶段训练过程体现了模型训练策略的复杂性和精细化,这对于构建高性能模型至关重要。

‘The Layman’s Introduction to DeepSeek-R1 Training’
medium.com/thoughts-on-machine-learning/the-laymans-introduction-to-deepseek-r1-training-80d8ff7a887d

相关文章:

【AI学习】关于 DeepSeek-R1的几个流程图

遇见关于DeepSeek-R1的几个流程图,清晰易懂形象直观,记录于此。 流程图一 来自文章《Understanding Reasoning LLMs》, 文章链接:https://magazine.sebastianraschka.com/p/understanding-reasoning-llms?continueFlagaf07b1a0…...

C++ ——从C到C++

1、C的学习方法 (1)C知识点概念内容比较多,需要反复复习 (2)偏理论,有的内容不理解,可以先背下来,后续可能会理解更深 (3)学好编程要多练习,简…...

【图片转换PDF】多个文件夹里图片逐个批量转换成多个pdf软件,子文件夹单独合并转换,子文件夹单独批量转换,基于Py的解决方案

建筑设计公司在项目执行过程中,会产生大量的设计图纸、效果图、实景照片等图片资料。这些资料按照项目名称、阶段、专业等维度存放在多个文件夹和子文件夹中。 操作需求:为了方便内部管理和向客户交付完整的设计方案,公司需要将每个项目文件…...

前端学习之Flex布局

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Flex布局示例</title><style>.conta…...

游戏引擎学习第97天

回顾昨天并计划今天 在这期节目中&#xff0c;主要讲解了光照的概念&#xff0c;并进一步讨论了法线贴图光照的实现。节目的内容大致分为几个部分&#xff1a; 光照的基础概述&#xff1a;讨论了光的工作原理以及如何在编程图形时需要考虑光照问题。尽管这些概念并没有深入到…...

Mysql中存储引擎各种介绍以及应用场景、优缺点

概述 MySQL 提供了多种存储引擎&#xff0c;每种引擎有不同的特点和适用场景。以下是几种常见的 MySQL 存储引擎的详细介绍&#xff0c;包括它们的底层工作原理、优缺点&#xff0c;以及为什么 MySQL 默认选择某种引擎。 1. InnoDB 底层工作原理&#xff1a; 事务支持&#…...

PHP 运算符

PHP 运算符 概述 PHP 是一种广泛使用的开源服务器端脚本语言,它具有丰富的运算符集,这些运算符是编写 PHP 程序的基础。运算符用于执行各种数学、逻辑和比较操作。本篇文章将详细介绍 PHP 中常用的运算符,包括算术运算符、比较运算符、逻辑运算符、赋值运算符等。 算术运…...

Vue全流程--Vue3.0与Vue2.0响应式原理对比

Vue2中数据的响应式 需要使用Vue.set这么一个api&#xff0c;修改数据 需要使用Vue.delete这么一个api&#xff0c;删除数据 数据代理这个当面的理解可以看看我前面文章Vue全流程--数据代理的理解以及在Vue中的应用-CSDN博客 Vue3中数据的响应式 Vue3使用proxy这个api实现…...

C语言学习笔记:子函数的调用实现各个位的累加和

在C语言程序学习之初&#xff0c;我们都会学习如何打印 hello world&#xff0c;在学习时我们知道了int main&#xff08;&#xff09;是主函数&#xff0c;程序从main函数开始执行&#xff0c;这是流程控制的一部分内容。在主函数中我们想要实现一些功能&#xff0c;比如求各个…...

【大模型】本地部署DeepSeek-R1:8b大模型及搭建Open-WebUI交互页面

本地部署DeepSeek-R1:8b大模型 一、摘要及版本选择说明1.1 摘要1.2 版本选择 二、下载并安装Ollama三、运行DeepSeek-R1:8b大模型四、安装Open WebUI增强交互体验五、关闭Ollama开机自动启动六、DeepSeek大模型启停步骤 一、摘要及版本选择说明 1.1 摘要 作为一名对 AI 和生成…...

Python 调用 Stabilityai API在本地生成图像

Python 调用 Stabilityai API在本地生成图像 摘要功能 代码结构关键技术代码下载立即体验 摘要 本程序利用硅基流动目前的免费 stabilityai/stable-diffusion-2-1 模型API&#xff0c;生成图像并下载到本地&#xff0c;用户可以通过输入描述性提示词来获取相应的图像。使用Pyt…...

Python3中异常处理:try-finally语句的示例

一. 简介 前面一篇文章简单学习了 try-finally语句结构&#xff0c;执行过程、以及使用场景。文章如下&#xff1a; Python3中异常处理&#xff1a;try-finally语句-CSDN博客 本文写一些简单的示例来继续学习 try-finally语句的使用。 二. Python3中异常处理&#xff1a;try…...

Lua限流器的3种写法

学而不思则罔&#xff0c;思而不学则殆 引言 上篇文章讲解了Lua脚本&#xff0c;事务和Pipline之间的使用方式和性能差距&#xff0c;本篇文章将聚焦Lua脚本&#xff0c;我将用三种写法来展现如何实现一个Redis限流器 固定窗口限流 固定窗口限流也是最简单的限流算法&#x…...

基于 GEE 利用插值方法填补缺失影像

目录 1 完整代码 2 运行结果 利用GEE合成NDVI时&#xff0c;如果研究区较大&#xff0c;一个月的影像覆盖不了整个研究区&#xff0c;就会有缺失的地方&#xff0c;还有就是去云之后&#xff0c;有云量的地区变成空值。 所以今天来用一种插值的方法来填补缺失的影像&#xf…...

linux部署ollama+deepseek+dify

Ollama 下载源码 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz启动 export OLLAMA_HOST0.0.0.0:11434 ollama serve访问ip:11434看到即成功 Ollama is running 手动安装deepseek…...

在微服务中,如何使用feign在各个微服务中进行远程调用

在微服务中&#xff0c;如何使用feign在不同微服务中进行远程调用 在微服务中&#xff0c;如何使用feign在不同微服务中进行远程调用 步骤&#xff1a; 第一步&#xff1a; 引入feign依赖 <dependency><groupId>org.springframework.cloud</groupId><…...

Kafka中的KRaft算法

我们之前的Kafka值依赖于Zookeeper注册中心来启动的&#xff0c;往里面注册我们节点信息 Kafka是什么时候不依赖Zookeeper节点了 在Kafka2.8.0开始就可以不依赖Zookeeper了 可以用KRaft模式代替Zookeeper管理Kafka集群 KRaft Controller和KRaft Leader的关系 两者关系 Lea…...

vue3 -- 集成 amap(高德地图)

🍍效果 本文介绍了如何在 Vue 3 项目中集成高德地图(AMap),并使用 PoiPicker 实现地点搜索功能。 文章首先通过 AMapLoader 异步加载高德地图 API,并初始化 Map 实例。同时,借助 AMapUI 组件库引入 PoiPicker,绑定搜索输入框,实现地点选择功能。PoiPicker 监听用户的 …...

基于用户的协同过滤算法推荐

import numpy as np 计算用户之间的相似度&#xff08;这里使用余弦相似度&#xff09; def cosine_similarity(user1, user2): numerator np.dot(user1, user2) denominator np.linalg.norm(user1) * np.linalg.norm(user2) return numerator / denominator if denominato…...

4.python+flask+SQLAlchemy+达梦数据库

前提 1.liunx Centos7上通过docker部署了达梦数据库。从达梦官网下载的docker镜像。(可以参考前面的博文) 2.windows上通过下载x86,win64位的达梦数据库,只安装客户端,不安装服务端。从达梦官网下载达梦数据库windows版。(可以参考前面的博文) 这样就可以用windows的达…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...