机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例
为了简单直观的理解模型训练,我这里搜集了两个简单的实现文本情感分类的例子,第一个例子基于朴素贝叶斯分类器,第二个例子基于逻辑回归,通过这两个例子,掌握词袋模型(Bag of Words)实现文本情感分类的基本原理,加深对机器学习的理解。
示例一
一、任务目标
使用词袋模型(BoW),将文本转化为数值向量,训练一个情感分类模型,判断句子是“积极”还是“消极”。
二、示例数据集
假设我们有以下4条标注好的训练数据:
1. "这个电影太棒了!" → 积极
2. "剧情糟糕,浪费时间。" → 消极
3. "演员演技非常好,推荐!" → 积极
4. "特效差,不建议观看。" → 消极
三、实现原理
词袋模型的核心思想:
将文本看作一个“装满单词的袋子”,忽略词序和语法,只统计每个单词出现的次数。
四、实现步骤
1. 文本预处理
-
分词:将句子拆分为单词(中文需分词工具,英文按空格拆分)。
-
去除停用词:过滤无意义的词(如“的”、“了”、“,”)。
-
统一小写:英文需统一为小写,中文无需此步骤。
1. ["电影", "太棒"]
2. ["剧情", "糟糕", "浪费", "时间"]
3. ["演员", "演技", "非常", "好", "推荐"]
4. ["特效", "差", "建议", "观看"]
2. 构建词袋(词汇表)
收集所有训练数据中的唯一单词,构建词汇表:
词汇表 = ["电影", "太棒", "剧情", "糟糕", "浪费", "时间",
"演员", "演技", "非常", "好", "推荐", "特效", "差", "建议", "观看"]
3. 文本向量化
将每个句子转换为一个向量,表示词汇表中每个单词的出现次数。
示例向量化结果:
1. "电影太棒" → [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2. "剧情糟糕浪费时间" → [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3. "演员演技非常好推荐" → [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0]
4. "特效差建议观看" → [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
4. 训练分类模型
使用朴素贝叶斯分类器(适合文本分类)进行训练:

5. 使用模型预测新句子
示例输入:"特效很棒但演员差"
步骤:
-
预处理:分词 → ["特效", "很棒", "演员", "差"]
-
向量化:根据词汇表生成向量:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]
(词汇表中"特效"=位置11,"演员"=位置6,"差"=位置12,其他词未出现)
3.预测:

五、通俗解释
-
词袋模型:像把句子里的单词倒进一个袋子,只数每个单词出现的次数,不管顺序。
-
训练过程:模型通过统计哪些词常出现在“积极”句,哪些词常出现在“消极”句,学习判断规律。
-
预测过程:新句子被拆解为单词后,模型根据学到的规律,计算属于“积极”或“消极”的概率。
六、完整代码示例(Python)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
# 训练数据
sentences = [
"这个电影太棒了!",
"剧情糟糕,浪费时间。",
"演员演技非常好,推荐!",
"特效差,不建议观看。"
]
labels = [1, 0, 1, 0] # 1=积极,0=消极
# 1. 文本向量化(自动处理分词和停用词需中文分词工具,此处简化手动处理)
# 手动定义词袋向量(实际应使用CountVectorizer)
X_train = [
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], # 电影太棒
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0], # 剧情糟糕浪费时间
[0,0,0,0,0,0,1,1,1,1,1,0,0,0,0], # 演员演技非常好推荐
[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] # 特效差建议观看
]
# 2. 训练模型
model = MultinomialNB()
model.fit(X_train, labels)
# 3. 预测新句子
new_sentence = "特效很棒但演员差"
# 手动向量化(实际需自动分词和映射)
new_vector = [0,0,0,0,0,0,0,0,0,0,0,1,1,0,0] # 特效、演员、差
prediction = model.predict([new_vector])
print("预测结果:", "积极" if prediction[0] == 1 else "消极") # 输出:消极
七、总结
-
词袋模型优点:简单易实现,适合小规模数据。
-
缺点:忽略词序和语义(如“好不”和“不好”会被视为相同)。
-
进阶方向:TF-IDF、N-gram、词嵌入(Word2Vec)等更复杂的文本表示方法。
示例二
词袋模型(BoW)是一种将文本转化为数值表示的常见方法,用于文本分类任务。首先,我们从一组文本中提取词汇,例如,句子“我喜欢读书”和“我讨厌读书”,得到词汇表:“我”、“喜欢”、“读书”、“讨厌”。接着,将每个句子转化为向量,每个维度对应一个词,表示该词在句子中是否出现或出现的频率。接下来,我们可以使用逻辑回归等分类器训练模型,最后用训练好的模型来预测新文本的情感。
一、基本原理
词袋模型的思想:
词袋模型将文本看作一个“词袋”,忽略单词之间的顺序,只关注每个单词出现的频率。这样,每篇文本就可以表示为一个向量,向量的每个维度对应一个词汇表中的词,其值为该词在文本中出现的次数(或经过其他处理后的权重,如TF-IDF)。
情感分类任务:
在情感分类任务中,我们希望根据文本的内容判断其情感倾向(例如正面或负面)。利用词袋模型,将文本转化为数值特征后,可以用常见的监督学习算法(如逻辑回归、朴素贝叶斯、支持向量机等)进行分类。
二、具体例子
假设我们有下面两个简单的训练文本,每个文本都有标注的情感标签:
- 文本1:"我 喜欢 读书" —— 正面情感
- 文本2:"我 讨厌 读书" —— 负面情感
1. 构建词汇表
首先,从训练数据中提取所有出现的词语。对于这两个文本,提取到的词汇有:
- "我"
- "喜欢"
- "讨厌"
- "读书"
因此,我们可以构建词汇表(Vocabulary)为:
Vocabulary={"我","喜欢","讨厌","读书"}
2. 文本向量化
接下来,将每个文本转换为向量,每个向量的维度对应词汇表中的一个词,值为该词出现的次数。
-
文本1:"我 喜欢 读书"
- “我”出现1次
- “喜欢”出现1次
- “讨厌”出现0次
- “读书”出现1次
得到向量:
-
文本2:"我 讨厌 读书"
- “我”出现1次
- “喜欢”出现0次
- “讨厌”出现1次
- “读书”出现1次
得到向量:
这些向量就是文本的数值化表示,它们捕获了文本中各单词的出现情况。
3. 训练分类模型
利用上述向量作为输入特征,并结合相应的情感标签(例如正面情感标记为1,负面情感标记为0),我们可以训练一个简单的分类模型。这里以逻辑回归为例:
训练步骤:
-
准备数据:
将训练样本构建成特征矩阵 X 和标签向量 y:
其中第一行对应“我 喜欢 读书”(正面),第二行对应“我 讨厌 读书”(负面)。
-
模型建立:
逻辑回归模型假设预测概率为:
其中,w 是权重向量,b 是偏置项。
-
训练过程:
采用梯度下降等优化方法,调整 w 和 b 使得模型在训练数据上损失函数(例如交叉熵损失)最小。 -
模型评估:
利用训练数据或独立的验证集,计算模型的预测准确率,调整超参数以获得更好的效果。
4. 模型使用
假设训练完成后,我们得到了最优参数 w^* 和 b^*。
如何使用训练好的模型:
-
新文本的向量化:
对于一个新文本,如“我 喜欢 电影”,首先根据之前的词汇表进行向量化:- 假设词汇表仍为 {"我","喜欢","讨厌","读书"}
- “我”出现1次,“喜欢”出现1次,“讨厌”出现0次,“读书”出现0次,因此向量为:

注意:新文本中的“电影”不在词汇表中,因此在简单词袋模型中会被忽略(这也是词袋模型的一个局限)。
-
预测:
将新文本的向量 vnew 代入逻辑回归模型,计算:
然后通过 sigmoid 函数转换为概率:

如果该概率大于某个阈值(例如0.5),则模型预测文本为正面情感;否则预测为负面情感。
总结
-
原理:
词袋模型将文本转换为不考虑词序的词频向量,通过这些向量来捕捉文本的内容信息。 -
过程:
- 构建词汇表
- 将文本向量化
- 利用标注数据训练分类模型(例如逻辑回归)
- 评估和调整模型
-
使用:
训练好的模型可用于对新文本进行向量化和情感预测,进而进行分类任务。
这种方法虽然简单,但能有效展示如何从原始文本到数值表示,再到利用机器学习模型进行情感分类的全过程。
相关文章:
机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例
为了简单直观的理解模型训练,我这里搜集了两个简单的实现文本情感分类的例子,第一个例子基于朴素贝叶斯分类器,第二个例子基于逻辑回归,通过这两个例子,掌握词袋模型(Bag of Words)实现文本情感…...
Kimi k1.5: Scaling Reinforcement Learning with LLMs
TL;DR 2025 年 kimi 发表的 k1.5 模型技术报告,和 DeepSeek R1 同一天发布,虽然精度上和 R1 有微小差距,但是文章提出的 RL 路线也有很强的参考意义 Paper name Kimi k1.5: Scaling Reinforcement Learning with LLMs Paper Reading Note…...
如何评估云原生GenAI应用开发中的安全风险(下)
以上就是如何评估云原生GenAI应用开发中的安全风险系列中的上篇内容,在本篇中我们介绍了在云原生AI应用开发中不同层级的风险,并了解了如何定义AI系统的风险。在本系列下篇中我们会继续探索我们为我们的云原生AI应用评估风险的背景和意义,并且…...
ASP.NET Core程序的部署
发布 不能直接把bin/Debug部署到生产环境的服务器上,性能低。应该创建网站的发布版,用【发布】功能。两种部署模式:“框架依赖”和“独立”。独立模式选择目标操作系统和CPU类型。Windows、Linux、iOS;关于龙芯。 网站的运行 在…...
《深度LSTM vs 普通LSTM:训练与效果的深度剖析》
在深度学习领域,长短期记忆网络(LSTM)以其出色的处理序列数据能力而备受瞩目。而深度LSTM作为LSTM的扩展形式,与普通LSTM在训练和效果上存在着一些显著的不同。 训练方面 参数数量与计算量:普通LSTM通常只有一层或较少…...
Spring依赖注入方式
写在前面:大家好!我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭&#x…...
Photoshop自定义键盘快捷键
编辑 - 键盘快捷键 CtrlShiftAltK 把画笔工具改成Q , 橡皮擦改成W , 涂抹工具改成E , 增加和减小画笔大小A和S 偏好设置 - 透明度和色域 设置一样颜色 套索工具 可以自定义套选一片区域 Shiftf5 填充 CtrlU 可以改颜色/色相/饱和度 CtrlE 合并图层 CtrlShiftS 另存…...
解决VsCode的 Vetur 插件has no default export Vetur问题
文章目录 前言1.问题2. 原因3. 解决其他 前言 提示: 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…...
关于浏览器缓存的思考
问题情境 开发中要实现一个非原生pdf预览功能,pdf链接放在一个固定的后台地址,当重新上传pdf后,预览pdf仍然是上一次的pdf内容,没有更新为最新的内容。 查看接口返回状态码为 200 OK(from disk cache), 表示此次pdf返回…...
Vue3+element-plus表单重置resetFields方法失效问题
遇到的其中一种情况: bug:在当前页面直接筛选重置,重置方法生效;但先筛选,再切换别的页面,再切回原页面重置,重置无效(keep-alive的页面无此bug) 原因: 1.Vue…...
解释和对比“application/octet-stream“与“application/x-protobuf“
介绍 在现代 Web 和分布式系统的开发中,数据的传输和交换格式扮演着关键角色。为了确保数据在不同系统之间的传输过程中保持一致性,MIME 类型(Multipurpose Internet Mail Extensions)被广泛应用于描述数据的格式和内容类型。在 …...
1158:求1+2+3+...
【题目描述】 用递归的方法求123……N123……N的值。 【输入】 输入N。 【输出】 输出和。 【输入样例】 5 【输出样例】 15 【解题思路】 递归 递归问题:求12…k的和递归关系:如果想求12…k的和,需要先求12…k-1的和,再加上…...
前端实现在PDF上添加标注(1)
前段时间接到一个需求,用户希望网页上预览PDF,同时能在PDF上添加文字,划线,箭头和用矩形框选的标注,另外还需要对已有的标注进行修改,删除。 期初在互联网上一通搜索,对这个需求来讲发现了两个问…...
螺旋矩阵 II
螺旋矩阵 II 一、题目描述 给定一个正整数 n,请你生成一个包含 1 到 n^2 所有元素的 n x n 正方形矩阵,元素顺序按顺时针的方式进行螺旋排列。 示例 1:输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2:…...
【愚公系列】《Python网络爬虫从入门到精通》001-初识网络爬虫
标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...
【linux学习指南】模拟线程封装与智能指针shared_ptr
文章目录 📝线程封装🌉 Thread.hpp🌉 Makefile 🌠线程封装第一版🌉 Makefile:🌉Main.cc🌉 Thread.hpp: 🌠线程封装第二版🌉 Thread.hpp:🌉 Main.cc …...
10、Python面试题解析:解释reduce函数的工作原理
reduce 是 Python 中的一个高阶函数,位于 functools 模块中。它的作用是将一个可迭代对象(如列表、元组等)中的元素依次通过一个二元函数(即接受两个参数的函数)进行累积计算,最终返回一个单一的结果。 1.…...
【含开题报告+文档+PPT+源码】学术研究合作与科研项目管理应用的J2EE实施
开题报告 本研究构建了一套集注册登录、信息获取与科研项目管理于一体的综合型学术研究合作平台。系统用户通过注册登录后,能够便捷地接收到最新的系统公告和科研动态新闻,并能进一步点击查看详尽的新闻内容。在科研项目管理方面,系统提供强…...
MySQL主从复制过程,延迟高,解决应对策略
MySQL主从复制延迟高是常见的性能问题,通常由主库写入压力大、从库处理能力不足或配置不当导致。以下从原因定位、优化策略和高级解决方案三个维度提供系统性解决方法: 一、快速定位延迟原因 1. 查看主从同步状态 SHOW SLAVE STATUS\G关键字段…...
Deepseek模拟阿里面试——数据库
在模拟阿里面试时,数据库部分需要涵盖广泛的知识点,包括基础概念、事务管理、索引优化、数据库设计、高并发处理、分布式数据库等。以下是对这些问题的详细分析和解答: 事务的ACID特性是什么,如何保证? ACID特性&…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
