当前位置: 首页 > news >正文

[AI]Mac本地部署Deepseek R1模型 — — 保姆级教程

[AI]Mac本地部署DeepSeek R1模型 — — 保姆级教程

DeepSeek R1是中国AI初创公司深度求索(DeepSeek)推出大模型DeepSeek-R1。 作为一款开源模型,R1在数学、代码、自然语言推理等任务上的性能能够比肩OpenAI o1模型正式版,并采用MIT许可协议,支持免费商用、任意修改和衍生开发等。 截至2月5日,国内外已有众多云平台宣布上线DeepSeek- R1大模型。

  • DeepSeek官方地址:https://www.deepseek.com/
    在这里插入图片描述
  • 但因目前遭到国外不明人员攻击以及访问量激增的原因,导致官方聊天不稳定,本文将介绍如何本地安装部署Deepseek R1模型,解决网络不稳定的窘境

安装ollama

  1. 访问官网选择mac os进行下载,官网地址:https://ollama.com/
    在这里插入图片描述

  2. 下载下来的文件为:Ollama-darwin.zip

  3. 点击解压,并移动到application
    在这里插入图片描述

  4. 点击next,点击Install安装ollama

安装Deepseek模型

  1. 根据页面提示在终端执行命令,运行ollama即可(但因为我们需要部署deepseek,所以后面修改下模型版本即可)
    [图片]

  2. 来到ollama官网,点击models,选择对应版本
    [图片]

  3. 点击之后,复制对应命令,在终端执行即可
    在这里插入图片描述
    在这里插入图片描述

  4. 等待模型下载完成后,就可以直接在终端进行对话
    在这里插入图片描述

安装可视化聊天页面chatbox

  1. 通过终端命令行操作肯定是不太方便的,所以接下来我们将通过chatbox搭建web可视化页面,方便我们与其对话
  • 打开官方地址:https://chatboxai.app/en,点击download
    在这里插入图片描述
  • 根据自己mac搭载的芯片,选择对应版本进行下载
    在这里插入图片描述
  1. 下载完后是.dmg文件,直接双击无脑安装即可
    在这里插入图片描述
  2. 然后在应用程序中找到我们安装的chatbox,双击启动,并选择使用自己的本地模型
    在这里插入图片描述
    在这里插入图片描述
  3. 选择模型提供方ollama,并配置本地模型参数
    在这里插入图片描述

查看效果

来到聊天框,输入问题,查看AI回答:
在这里插入图片描述

拓展:ollama常用命令

# 启动ollama服务
ollama serve# 创建模型:使用 Modelfile 来创建一个新模型。你需要提供一个包含模型信息的 Modelfile
ollama create /path/to/Modelfile# 显示模型信息
ollama show model_name# 列出本地所有模型
ollama list
ollama ls# 运行模型
ollama run model_name# 列出正在运行的模型
ollama ps# 停止模型
ollama stop model_name# 删除一个已安装的模型
ollama rm model_name# 查看版本信息
ollama -v# 复制模型
ollama cp old_model new_model# 拉取远端模型
ollama pull model_name# 将本地模型推送到模型注册表中,以便他人或其他系统使用
ollama push model_name# 使用 ollama run 命令启动模型并进入交互模式,在交互模式下,输入 /bye 或按下 Ctrl+d 退出
ollama run deepseek-r1:1.5b# 单次命令交互
echo "你是谁?" | ollama run deepseek-r1:1.5b

相关文章:

[AI]Mac本地部署Deepseek R1模型 — — 保姆级教程

[AI]Mac本地部署DeepSeek R1模型 — — 保姆级教程 DeepSeek R1是中国AI初创公司深度求索(DeepSeek)推出大模型DeepSeek-R1。 作为一款开源模型,R1在数学、代码、自然语言推理等任务上的性能能够比肩OpenAI o1模型正式版,并采用MI…...

android手机本地部署deepseek1.5B

手机本地部署大模型需要一个开源软件 Release Release v1.6.7 a-ghorbani/pocketpal-ai GitHub 下载release版本apk 它也支持ios,并且是开源的,你可以编译修改它 安装完后是这样的 可以下载推荐的模型,也可以在pc上下载好,然后copy到手机里 点 + 号加载本地模型...

理解UML中的四种关系:依赖、关联、泛化和实现

在软件工程中,统一建模语言(UML)是一种广泛使用的工具,用于可视化、设计、构造和文档化软件系统。UML提供了多种图表类型,如类图、用例图、序列图等,帮助开发者和设计师更好地理解系统的结构和行为。在UML中…...

机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例

为了简单直观的理解模型训练,我这里搜集了两个简单的实现文本情感分类的例子,第一个例子基于朴素贝叶斯分类器,第二个例子基于逻辑回归,通过这两个例子,掌握词袋模型(Bag of Words)实现文本情感…...

Kimi k1.5: Scaling Reinforcement Learning with LLMs

TL;DR 2025 年 kimi 发表的 k1.5 模型技术报告,和 DeepSeek R1 同一天发布,虽然精度上和 R1 有微小差距,但是文章提出的 RL 路线也有很强的参考意义 Paper name Kimi k1.5: Scaling Reinforcement Learning with LLMs Paper Reading Note…...

如何评估云原生GenAI应用开发中的安全风险(下)

以上就是如何评估云原生GenAI应用开发中的安全风险系列中的上篇内容,在本篇中我们介绍了在云原生AI应用开发中不同层级的风险,并了解了如何定义AI系统的风险。在本系列下篇中我们会继续探索我们为我们的云原生AI应用评估风险的背景和意义,并且…...

ASP.NET Core程序的部署

发布 不能直接把bin/Debug部署到生产环境的服务器上,性能低。应该创建网站的发布版,用【发布】功能。两种部署模式:“框架依赖”和“独立”。独立模式选择目标操作系统和CPU类型。Windows、Linux、iOS;关于龙芯。 网站的运行 在…...

《深度LSTM vs 普通LSTM:训练与效果的深度剖析》

在深度学习领域,长短期记忆网络(LSTM)以其出色的处理序列数据能力而备受瞩目。而深度LSTM作为LSTM的扩展形式,与普通LSTM在训练和效果上存在着一些显著的不同。 训练方面 参数数量与计算量:普通LSTM通常只有一层或较少…...

Spring依赖注入方式

写在前面:大家好!我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭&#x…...

Photoshop自定义键盘快捷键

编辑 - 键盘快捷键 CtrlShiftAltK 把画笔工具改成Q , 橡皮擦改成W , 涂抹工具改成E , 增加和减小画笔大小A和S 偏好设置 - 透明度和色域 设置一样颜色 套索工具 可以自定义套选一片区域 Shiftf5 填充 CtrlU 可以改颜色/色相/饱和度 CtrlE 合并图层 CtrlShiftS 另存…...

解决VsCode的 Vetur 插件has no default export Vetur问题

文章目录 前言1.问题2. 原因3. 解决其他 前言 提示: 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…...

关于浏览器缓存的思考

问题情境 开发中要实现一个非原生pdf预览功能,pdf链接放在一个固定的后台地址,当重新上传pdf后,预览pdf仍然是上一次的pdf内容,没有更新为最新的内容。 查看接口返回状态码为 200 OK(from disk cache), 表示此次pdf返回…...

Vue3+element-plus表单重置resetFields方法失效问题

遇到的其中一种情况: bug:在当前页面直接筛选重置,重置方法生效;但先筛选,再切换别的页面,再切回原页面重置,重置无效(keep-alive的页面无此bug) 原因: 1.Vue…...

解释和对比“application/octet-stream“与“application/x-protobuf“

介绍 在现代 Web 和分布式系统的开发中,数据的传输和交换格式扮演着关键角色。为了确保数据在不同系统之间的传输过程中保持一致性,MIME 类型(Multipurpose Internet Mail Extensions)被广泛应用于描述数据的格式和内容类型。在 …...

1158:求1+2+3+...

【题目描述】 用递归的方法求123……N123……N的值。 【输入】 输入N。 【输出】 输出和。 【输入样例】 5 【输出样例】 15 【解题思路】 递归 递归问题:求12…k的和递归关系:如果想求12…k的和,需要先求12…k-1的和,再加上…...

前端实现在PDF上添加标注(1)

前段时间接到一个需求,用户希望网页上预览PDF,同时能在PDF上添加文字,划线,箭头和用矩形框选的标注,另外还需要对已有的标注进行修改,删除。 期初在互联网上一通搜索,对这个需求来讲发现了两个问…...

螺旋矩阵 II

螺旋矩阵 II 一、题目描述 给定一个正整数 n,请你生成一个包含 1 到 n^2 所有元素的 n x n 正方形矩阵,元素顺序按顺时针的方式进行螺旋排列。 示例 1:输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2:…...

【愚公系列】《Python网络爬虫从入门到精通》001-初识网络爬虫

标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...

【linux学习指南】模拟线程封装与智能指针shared_ptr

文章目录 📝线程封装🌉 Thread.hpp🌉 Makefile 🌠线程封装第一版🌉 Makefile:🌉Main.cc🌉 Thread.hpp: 🌠线程封装第二版🌉 Thread.hpp:🌉 Main.cc &#x1f…...

10、Python面试题解析:解释reduce函数的工作原理

reduce 是 Python 中的一个高阶函数,位于 functools 模块中。它的作用是将一个可迭代对象(如列表、元组等)中的元素依次通过一个二元函数(即接受两个参数的函数)进行累积计算,最终返回一个单一的结果。 1.…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...