每日定投40刀BTC(2)20250209 - 20250212
相关文章:
每日定投40刀BTC(2)20250209 - 20250212
行路吟 青山叠叠水迢迢, 步履虽艰志未消。 莫问前程几多苦, 长风破浪自逍遥。...
【LeetCode Hot100 子串】和为 k 的子数组、滑动窗口最大值、最小覆盖子串
子串 1. 和为 k 的子数组题目描述解题思路主要思路步骤 时间复杂度与空间复杂度代码实现 2. 滑动窗口最大值题目描述解题思路双端队列的原理:优化步骤: Java实现 3. 最小覆盖子串题目描述解题思路滑动窗口的基本思路:具体步骤:算法…...
某虚拟页式存储管理系统中有一个程序占8个页面,运行时访问页面的顺序是1,2,3,4,5,3,4,1,6,7,8,7,8,5。假设刚开始内存没有预装入任何页面。
某虚拟页式存储管理系统中有一个程序占8个页面,运行时访问页面的顺序是1,2,3,4,5,3,4,1,6,7,8,7,8,5。假设刚开始内存没有预装入任何页面。 (1) 如果采用LRU调度算法,该程序在得到4块内存空间时,会产生多少次缺页中断?请给出详细…...
傅里叶公式推导(三)
文章目录 周期 2L周期T 周期 2L 周期 T 2 L T2L T2L 的傅里叶变换 即 f ( t ) f ( t 2 L ) f(t) f(t2L) f(t)f(t2L) xt2 π \pi π 2 L 2L 2L 原公式 f ( x ) a 0 2 ∑ n 1 ∞ [ a n cos n x b n sin n x ] a 0 1 π ∫ − π π f ( x ) d x a n 1 π ∫…...
Ubuntu 下 nginx-1.24.0 源码分析 - ngx_time_update函数
定义在 src\core\ngx_times.c 中 ngx_time_init 函数后面 void ngx_time_update(void) {u_char *p0, *p1, *p2, *p3, *p4;ngx_tm_t tm, gmt;time_t sec;ngx_uint_t msec;ngx_time_t *tp;struct timeval tv;if (!ngx_trylock(&ngx…...
老牌系统工具箱,现在还能打!
今天给大家分享一款超实用的电脑软硬件检测工具,虽然它是一款比较“资深”的软件,但依然非常好用,完全能满足我们的日常需求。 电脑软硬件维护检测工具 功能强大易用 这款软件非常贴心,完全不需要安装,直接打开就能用…...
mysql error1449解决方法
MySQL Error 1449 错误信息为 “The user specified as a definer (userhost) does not exist”,意思是定义者(创建存储过程、函数、触发器等数据库对象时指定的用户)在当前系统中不存在,从而导致无法正常使用这些对象。以下是针对…...
Notepad++ 中删除所有以 “pdf“ 结尾的行
Notepad 中删除所有以 “pdf” 结尾的行 操作步骤 1.打开文件: 在 Notepad 中打开你需要处理的文本文件。 2.打开查找和替换对话框: 按快捷键 Ctrl F,打开“查找和替换”对话框。 3.启用正则表达式模式: 在对话框的底部…...
归并排序 和 七大算法的总结图
目录 什么是递归排序: 图解: 递归方法: 代码实现: 思路分析: 非递归方法: 思路: 代码实现: 思路分析: 什么是递归排序: 先将数据分解成诺干个序列࿰…...
嵌入式硬件篇---原码、补码、反码
文章目录 前言简介八进制原码、反码、补码1. 原码规则示例问题 2. 反码规则示例问题 3. 补码规则示例优点 4. 补码的运算5. 总结 十六进制原码、反码、补码1. 十六进制的基本概念2. 十六进制的原码规则示例 3. 十六进制的反码规则示例 4. 十六进制的补码规则示例 5. 十六进制补…...
评估多智能体协作网络(MACNET)的性能:COT和AUTOGPT基线方法
评估多智能体协作网络(MACNET)的性能 方法选择:选择COT(思维链,Chain of Thought)、AUTOGPT等作为基线方法。 COT是一种通过在推理过程中生成中间推理步骤,来增强语言模型推理能力的方法,能让模型更好地处理复杂问题,比如在数学问题求解中,展示解题步骤。 AUTOGPT则是…...
洛谷题目: P2398 GCD SUM 题解 (本题较难,省选-难度)
题目传送门: P2398 GCD SUM - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 前言: 本题涉及到 欧拉函数,素数判断,质数,筛法 ,三大知识点,相对来说还是比较难的。 本题要求我们计算 …...
kubernetes-cni 框架源码分析
深入探索 Kubernetes 网络模型和网络通信 Kubernetes 定义了一种简单、一致的网络模型,基于扁平网络结构的设计,无需将主机端口与网络端口进行映射便可以进行高效地通讯,也无需其他组件进行转发。该模型也使应用程序很容易从虚拟机或者主机物…...
AI Agent有哪些痛点问题
AI Agent有哪些痛点问题 目录 AI Agent有哪些痛点问题AI Agent领域有哪些知名的论文缺乏一个将智能多智能体技术和在真实环境中学习的两个适用流程结合起来的统一框架LLM的代理在量化和客观评估方面存在挑战自主代理在动态环境中学习、推理和驾驭不确定性存在挑战AI Agent领域有…...
使用Java爬虫获取京东JD.item_sku API接口数据
在电商领域,商品的SKU(Stock Keeping Unit)信息是运营和管理的关键数据。SKU信息包括商品的规格、价格、库存等,对于商家的库存管理、定价策略和市场分析至关重要。京东作为国内领先的电商平台,提供了丰富的API接口&am…...
华为云+硅基流动使用Chatbox接入DeepSeek-R1满血版671B
华为云硅基流动使用Chatbox接入DeepSeek-R1满血版671B 硅基流动 1.1 注册登录 1.2 实名认证 1.3 创建API密钥 1.4 客户端工具 OllamaChatboxCherry StudioAnythingLLM 资源包下载: AI聊天本地客户端 接入Chatbox客户端 点击设置 选择SiliconFloW API 粘贴1.3创…...
平方数列与立方数列求和的数学推导
先上结论: 平方数列求和公式为: S 2 ( n ) n ( n 1 ) ( 2 n 1 ) 6 S_2(n) \frac{n(n1)(2n1)}{6} S2(n)6n(n1)(2n1) 立方数列求和公式为: S 3 ( n ) ( n ( n 1 ) 2 ) 2 S_3(n) \left( \frac{n(n1)}{2} \right)^2 S3(n)(2n(n1)…...
Java中的synchronized关键字与锁升级机制
在多线程编程中,线程同步是确保程序正确执行的关键。当多个线程同时访问共享资源时,如果不进行同步管理,可能会导致数据不一致的问题。为了避免这些问题,Java 提供了多种同步机制,其中最常见的就是 synchronized 关键字…...
告别传统校准!GNSS模拟器在计量行业的应用
随着GNSS技术的不断进步,各类设备广泛采用该技术实现高精度定位,并推动了其在众多领域的广泛应用。对于关键行业如汽车制造和基础设施,设备的可用性和可靠性被视为基本准则,GNSS作为提供“绝对位置”信息的关键传感器,…...
数据结构结尾
1.二叉树的分类 搜索二叉树,平衡二叉树,红黑树,B树,B树 2.Makefile文件管理 注意: 时间戳:根据时间戳,只编译发生修改后的文件 算法: 算法有如上五个要求。 算法的时间复杂度&am…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

