【设计模式】【行为型模式】观察者模式(Observer)
👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD
🔥 2025本人正在沉淀中… 博客更新速度++
👍 欢迎点赞、收藏、关注,跟上我的更新节奏
🎵 当你的天空突然下了大雨,那是我在为你炸乌云
文章目录
- 一、入门
- 什么是观察者模式?
- 为什么要观察者模式?
- 怎么实现观察者模式?
- 二、观察者模式在源码中运用
- Java 中的 java.util.Observer 和 java.util.Observable
- Observer和Observable的使用
- Observer和Observable的源码实现
- Spring 框架中的事件机制
- Spring事件机制的使用
- Spring的事件机质的源码实现
- 三、总结
- 观察者模式的优点
- 观察者模式的缺点
- 观察者模式的适用场景
- 参考
一、入门
什么是观察者模式?
观察者模式(Observer Pattern)是一种行为设计模式,它定义了对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会收到通知并自动更新。
为什么要观察者模式?
假设我们正在开发一个天气预报系统,其中:
- WeatherStation(气象站):负责收集天气数据(如温度、湿度等)。
- Display(显示设备):负责显示天气数据,比如手机App、电子屏等。
当气象站的数据更新时,所有显示设备都需要实时更新显示内容。
下面是没有观察者模式时的实现:
class WeatherStation {private float temperature;private float humidity;private PhoneDisplay phoneDisplay;private TVDisplay tvDisplay;public void setPhoneDisplay(PhoneDisplay phoneDisplay) {this.phoneDisplay = phoneDisplay;}public void setTVDisplay(TVDisplay tvDisplay) {this.tvDisplay = tvDisplay;}public void removePhoneDisplay() {phoneDisplay = null;}public void removeTVDisplay() {phoneDisplay = null;}public void setMeasurements(float temperature, float humidity) {this.temperature = temperature;this.humidity = humidity;// 手动调用显示设备的更新方法if (phoneDisplay != null) {phoneDisplay.update(temperature, humidity);}if (tvDisplay != null) {tvDisplay.update(temperature, humidity);}}
}
紧耦合
如果没有观察者模式,气象站需要直接知道所有显示设备的存在,并手动调用它们的更新方法。例如:
问题:
- 气象站和显示设备之间是紧耦合的,气象站需要知道所有显示设备的具体实现。
- 如果新增一个显示设备(比如智能手表),需要修改气象站的代码,违反了开闭原则(对扩展开放,对修改关闭)。
难以动态管理依赖
如果显示设备需要动态添加或移除(比如用户关闭了某个显示设备),气象站需要手动管理这些设备的引用。
扩展性差
如果未来需要支持更多类型的观察者(比如日志记录器、报警系统等),气象站的代码会变得越来越臃肿,难以维护。
怎么实现观察者模式?
在观察者模式中有如下角色:
- Subject:抽象主题(抽象被观察者),抽象主题角色把所有观察者对象保存在一个集合里,每个主题都可以有任意数量的观察者,抽象主题提供一个接口,可以增加和删除观察者对象。
- ConcreteSubject:具体主题(具体被观察者),该角色将有关状态存入具体观察者对象,在具体主题的内部状态发生改变时,给所有注册过的观察者发送通知。
- Observer:抽象观察者,是观察者的抽象类,它定义了一个更新接口,使得在得到主题更改通知时更新自己。
- ConcrereObserver:具体观察者,实现抽象观察者定义的更新接口,以便在得到主题更改通知时更新自身的状态。
【案例】天气站 - 改

Observer观察者: Observer接口
interface Observer {void update(float temperature, float humidity);
}
Subject主题: subject接口
interface Subject {void registerObserver(Observer observer);void removeObserver(Observer observer);void notifyObservers();
}
实现具体主题(气象站): WeatherStation类
class WeatherStation implements Subject {private List<Observer> observers = new ArrayList<>();private float temperature;private float humidity;@Overridepublic void registerObserver(Observer observer) {observers.add(observer);}@Overridepublic void removeObserver(Observer observer) {observers.remove(observer);}@Overridepublic void notifyObservers() {for (Observer observer : observers) {observer.update(temperature, humidity);}}public void setMeasurements(float temperature, float humidity) {this.temperature = temperature;this.humidity = humidity;notifyObservers(); // 通知所有观察者}
}
实现具体观察者(显示设备): PhoneDisplay类和TVDisplay类
class PhoneDisplay implements Observer {@Overridepublic void update(float temperature, float humidity) {System.out.println("手机显示:温度 = " + temperature + ",湿度 = " + humidity);}
}class TVDisplay implements Observer {@Overridepublic void update(float temperature, float humidity) {System.out.println("电视显示:温度 = " + temperature + ",湿度 = " + humidity);}
}
测试类
public class WeatherApp {public static void main(String[] args) {WeatherStation weatherStation = new WeatherStation();Observer phoneDisplay = new PhoneDisplay();Observer tvDisplay = new TVDisplay();weatherStation.registerObserver(phoneDisplay);weatherStation.registerObserver(tvDisplay);// 更新天气数据weatherStation.setMeasurements(25.5f, 60.0f);// 移除一个观察者weatherStation.removeObserver(tvDisplay);// 再次更新天气数据weatherStation.setMeasurements(26.0f, 58.0f);}
}
运行结果
手机显示:温度 = 25.5,湿度 = 60.0
电视显示:温度 = 25.5,湿度 = 60.0
手机显示:温度 = 26.0,湿度 = 58.0
二、观察者模式在源码中运用
Java 中的 java.util.Observer 和 java.util.Observable
Java 标准库中提供了观察者模式的实现,分别是 Observer 接口和 Observable 类。
- Observable 是被观察者的基类,内部维护了一个观察者列表,并提供了 addObserver、deleteObserver 和 notifyObservers 方法。
- Observer 是观察者接口,定义了 update 方法,用于接收通知。
Observer和Observable的使用
被观察者(具体主题):WeatherData类
// 被观察者(主题)
class WeatherData extends Observable {private float temperature;private float humidity;public void setMeasurements(float temperature, float humidity) {this.temperature = temperature;this.humidity = humidity;setChanged(); // 标记状态已改变notifyObservers(); // 通知观察者}public float getTemperature() {return temperature;}public float getHumidity() {return humidity;}
}
观察者(具体观察者): Display类
// 观察者
class Display implements Observer {@Overridepublic void update(Observable o, Object arg) {if (o instanceof WeatherData) {WeatherData weatherData = (WeatherData) o;float temperature = weatherData.getTemperature();float humidity = weatherData.getHumidity();System.out.println("当前温度: " + temperature + ",湿度: " + humidity);}}
}
测试
public class ObserverPatternDemo {public static void main(String[] args) {WeatherData weatherData = new WeatherData();Display display = new Display();weatherData.addObserver(display); // 注册观察者weatherData.setMeasurements(25.5f, 60.0f); // 更新数据并通知观察者}
}
输出结果
当前温度: 25.5,湿度: 60.0
Observer和Observable的源码实现
观察者:Observer类,入参Observable o:被观察的对象(主题)和 Object arg:传递给观察者的额外参数(可选)。
public interface Observer {void update(Observable o, Object arg);
}
主题:Observable类。
我们可以看到Vector<Observer>存储观察者列表。并且因为加了synchronized关键字,这些方法都是线程安全的。notifyObservers方法会遍历观察者列表,并调用每个观察者的update方法。
public class Observable {// 标记对象是否已改变private boolean changed = false;// 观察者列表(使用 Vector 保证线程安全)private Vector<Observer> obs;public Observable() {obs = new Vector<>();}// 添加观察者public synchronized void addObserver(Observer o) {if (o == null)throw new NullPointerException();if (!obs.contains(o)) {obs.addElement(o);}}// 删除观察者public synchronized void deleteObserver(Observer o) {obs.removeElement(o);}// 通知所有观察者(无参数)public void notifyObservers() {notifyObservers(null);}// 通知所有观察者(带参数)public void notifyObservers(Object arg) {Observer[] arrLocal;// 同步块,确保线程安全synchronized (this) {if (!changed) // 如果没有变化,直接返回return;arrLocal = obs.toArray(new Observer[obs.size()]);clearChanged(); // 重置变化标志}// 遍历观察者列表,调用 update 方法for (Observer observer : arrLocal) {observer.update(this, arg);}}// 删除所有观察者public synchronized void deleteObservers() {obs.removeAllElements();}// 标记对象已改变protected synchronized void setChanged() {changed = true;}// 重置变化标志protected synchronized void clearChanged() {changed = false;}// 检查对象是否已改变public synchronized boolean hasChanged() {return changed;}// 返回观察者数量public synchronized int countObservers() {return obs.size();}
}
Spring 框架中的事件机制
Spring 框架中的事件机制是基于观察者模式实现的。它允许开发者定义自定义事件,并通过监听器(观察者)来处理这些事件。
Spring事件机制的使用
自定义事件
class CustomEvent extends ApplicationEvent {private String message;public CustomEvent(Object source, String message) {super(source);this.message = message;}public String getMessage() {return message;}
}
事件监听器(观察者)
@Component
class CustomEventListener implements ApplicationListener<CustomEvent> {@Overridepublic void onApplicationEvent(CustomEvent event) {System.out.println("收到事件: " + event.getMessage());}
}
事件发布者
@Component
class CustomEventPublisher {private final AnnotationConfigApplicationContext context;public CustomEventPublisher(AnnotationConfigApplicationContext context) {this.context = context;}public void publishEvent(String message) {context.publishEvent(new CustomEvent(this, message));}
}
配置类
@Configuration
@ComponentScan
class AppConfig {}
测试类
public class SpringEventDemo {public static void main(String[] args) {AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(AppConfig.class);CustomEventPublisher publisher = context.getBean(CustomEventPublisher.class);publisher.publishEvent("Hello, Spring Event!");context.close();}
}
输出内容
收到事件: Hello, Spring Event!
Spring的事件机质的源码实现
Spring 事件机制的核心组件包括:
ApplicationEvent:事件的基类,所有自定义事件都需要继承它。对应观察者模式中的“事件”。ApplicationListener:观察者接口,定义了处理事件的方法。对应观察者模式中的“观察者”。ApplicationEventPublisher:事件发布者接口,用于发布事件。对应观察者模式中的“主题”。ApplicationEventMulticaster:事件广播器,负责将事件分发给所有监听器。类似于观察者模式中的“通知机制”。
ApplicationEvent 类:ApplicationEvent 是所有事件的基类,它继承自 java.util.EventObject。
public abstract class ApplicationEvent extends EventObject {private final long timestamp; // timestamp: 事件发生的时间戳。public ApplicationEvent(Object source) { // source:事件源,通常是发布事件的对象。super(source);this.timestamp = System.currentTimeMillis();}public final long getTimestamp() {return this.timestamp;}
}
ApplicationListener接口: ApplicationListener是观察者接口,定义了处理事件的方法。
@FunctionalInterface
public interface ApplicationListener<E extends ApplicationEvent> extends EventListener {void onApplicationEvent(E event); // 当事件发生时,会调用此方法。
}
ApplicationEventPublisher接口: 是事件发布者接口,用于发布事件。
@FunctionalInterface
public interface ApplicationEventPublisher {default void publishEvent(ApplicationEvent event) {publishEvent((Object) event);}void publishEvent(Object event);
}
ApplicationEventMulticaster接口:是事件广播器接口,负责将事件分发给所有监听器。
public interface ApplicationEventMulticaster {void addApplicationListener(ApplicationListener<?> listener);void addApplicationListenerBean(String listenerBeanName);void removeApplicationListener(ApplicationListener<?> listener);void removeApplicationListenerBean(String listenerBeanName);void removeAllListeners();void multicastEvent(ApplicationEvent event); void multicastEvent(ApplicationEvent event, ResolvableType eventType);
}
SimpleApplicationEventMulticaster 类:SimpleApplicationEventMulticaster是ApplicationEventMulticaster的默认实现类。
public class SimpleApplicationEventMulticaster extends AbstractApplicationEventMulticaster {// 遍历所有监听器,并调用 onApplicationEvent 方法。@Overridepublic void multicastEvent(final ApplicationEvent event, ResolvableType eventType) {ResolvableType type = (eventType != null ? eventType : resolveDefaultEventType(event));for (final ApplicationListener<?> listener : getApplicationListeners(event, type)) {Executor executor = getTaskExecutor();if (executor != null) {executor.execute(() -> invokeListener(listener, event));} else {invokeListener(listener, event);}}}// 实际调用监听器的 onApplicationEvent 方法。protected void invokeListener(ApplicationListener<?> listener, ApplicationEvent event) {try {listener.onApplicationEvent(event);} catch (ClassCastException ex) {// 处理类型转换异常}}
}
三、总结
观察者模式的优点
解耦:主题(Subject)和观察者(Observer)之间是松耦合的(主题不需要知道观察者的具体实现,只需要知道观察者接口,观察者也不需要知道主题的具体实现,只需要实现观察者接口)
动态管理依赖:观察者可以动态注册和注销,而不需要修改主题的代码。支持运行时动态添加或移除观察者,灵活性高。
符合开闭原则:可以轻松添加新的观察者,而不需要修改主题的代码。主题的代码不需要因为观察者的变化而修改。
广播通信:主题可以一次性通知所有观察者,适合一对多的通信场景。观察者可以根据需要选择是否响应通知。
职责分离:主题负责维护状态和通知观察者。观察者负责处理状态变化的逻辑。职责分离使得代码更加清晰和可维护。
观察者模式的缺点
- 性能问题
- 如果观察者数量非常多,通知所有观察者可能会消耗大量时间。
- 如果观察者的处理逻辑复杂,可能会导致性能瓶颈。
- 内存泄漏
- 如果观察者没有正确注销,可能会导致观察者无法被垃圾回收,从而引发内存泄漏。
- 特别是在长时间运行的应用中,需要特别注意观察者的生命周期管理。
- 调试困难
- 由于观察者和主题是松耦合的,调试时可能难以追踪事件的传递路径。
- 如果观察者的处理逻辑出现问题,可能不容易定位问题根源。
- 事件顺序不确定
- 观察者收到通知的顺序通常是不确定的,如果业务逻辑对顺序有要求,可能需要额外的处理。
观察者模式的适用场景
- 事件驱动系统
- 当一个对象的状态变化需要触发其他对象的操作时,可以使用观察者模式。
- 例如:GUI 框架中的按钮点击事件、Spring 框架中的事件机制。
- 一对多的依赖关系
- 当一个对象的状态变化需要通知多个其他对象时,可以使用观察者模式。
- 例如:气象站和多个显示设备的关系。
- 跨系统的消息通知
- 在分布式系统中,观察者模式可以用于实现消息的发布和订阅。
- 例如:消息队列(MQ)中的发布-订阅模型。
- 状态变化的广播
- 当一个对象的状态变化需要广播给多个对象时,可以使用观察者模式。
- 例如:游戏中的角色状态变化通知其他系统(如 UI、音效等)。
- 解耦业务逻辑
- 当需要将业务逻辑解耦为多个独立的模块时,可以使用观察者模式。
- 例如:订单系统中的订单状态变化通知库存系统、物流系统等。
参考
黑马程序员Java设计模式详解, 23种Java设计模式(图解+框架源码分析+实战)_哔哩哔哩_bilibili
相关文章:
【设计模式】【行为型模式】观察者模式(Observer)
👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 👍 欢迎点赞、收藏、关注,跟上我的更新节奏 🎵 当你的天空突…...
RAGFlow和Dify对比
RAGFlow和Dify都是基于大语言模型(LLM)的应用开发平台,具有相似的功能和应用场景,但它们在技术架构、部署要求和用户体验上存在一些差异。 RAGFlow和Dify对比 2025-02-13 22.08 RAGFlow 技术栈:RAGFlow…...
AI前端开发:蓬勃发展的机遇与挑战
人工智能(AI)领域的飞速发展,正深刻地改变着我们的生活方式,也为技术人才,特别是AI代码生成领域的专业人士,带来了前所未有的机遇。而作为AI应用与用户之间桥梁的前端开发,其重要性更是日益凸显…...
结构型模式---代理模式
概念 代理模式是一种结构型模式,主要用于在客户端和接口之间添加一个中间层,用于在客户端和接口之间进行权限控制或者其他的中间层操作。 使用场景 1、延缓初始化,当我们偶尔需要使用一个重量级的服务对象,如果一直保持该对象的…...
Java面向对象一:相关概念
面向过程&面向对象 面向过程思想 步骤清晰简单,第一步做什么,第二步做什么… 面对过程适合处理一些较为简单的问题面向对象思想 物以类聚,分类的思维模式,思考问题首先会解决问题需要哪些分类,然后对这些分类进行…...
CEF132 编译指南 MacOS 篇 - depot_tools 安装与配置 (四)
1. 引言 在 CEF132(Chromium Embedded Framework)的编译过程中,depot_tools 扮演着举足轻重的角色。这套由 Chromium 项目精心打造的脚本和工具集,专门用于获取、管理和更新 Chromium 及其相关项目(包括 CEFÿ…...
React VS Vue
React 和 Vue 是目前最流行的两个前端框架,它们在设计理念、生态系统和开发体验上各有特点。以下是对 React 和 Vue 的全方位对比: 1. 核心设计理念 React 库而非框架:React 是一个用于构建 UI 的库,专注于视图层,其…...
伺服报警的含义
前言: 大家好,我是上位机马工,硕士毕业4年年入40万,目前在一家自动化公司担任软件经理,从事C#上位机软件开发8年以上!我们在开发C#的运动控制程序的时候,一个必要的步骤就是设置伺服报警信号的…...
CSS 属性选择器详解与实战示例
CSS 属性选择器是 CSS 中非常强大且灵活的一类选择器,它能够根据 HTML 元素的属性和值来进行精准选中。在实际开发过程中,属性选择器不仅可以提高代码的可维护性,而且能够大大优化页面的样式控制。本文将结合菜鸟教程的示例,从基础…...
基于STM32、HAL库、HS12864(ST7920,并行接口)C语言程序设计
1、hs12864.h头文件: #ifndef __HS12864_H #define __HS12864_H #ifdef __cplusplus extern "C" {#endif #include "stm32l4xx_hal.h" // 控制线定义 - 根据实际硬件修改 #define HS12864_RS_GPIO_PORT GPIOC #define HS12864_RS_PIN GPIO_PI…...
Python练习11-20
题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 题目:判断101-200之间有多少…...
探索ELK 的魅力
在大数据时代,海量日志和数据的收集、存储、处理与可视化分析变得越来越重要。而 ELK 堆栈,由 Elasticsearch、Logstash、Beats 和 Kibana 组成,正是一个强大的开源解决方案,帮助开发者和运维人员高效管理和分析日志数据。本文将详…...
【ROS2综合案例】乌龟跟随
一、前期准备 1.1 安装 1. 首先安装“乌龟跟随”案例的功能包以及依赖项。 安装方式1(二进制方式安装): sudo apt-get install ros-humble-turtle-tf2-py ros-humble-tf2-tools ros-humble-tf-transformations 安装方式2(克…...
多式联运最优路径算法
多式联运的最优路径优化问题涉及运输成本、时间、碳排放等多目标权衡,需结合运输方式(公路、铁路、水路、航空等)的协同性,通过算法模型寻找综合最优解。以下是相关研究进展与算法应用的总结: 一、多式联运路径优化的核…...
GPT-SWARM和AgentVerse的拓扑结构和交互机制
GPT-SWARM和AgentVerse的拓扑结构和交互机制 拓扑结构区别 GPT-SWARM:采用图结构,将语言智能体系统描述为可优化的计算图。图中的每个节点代表一个操作,如语言模型推理或工具使用等特定功能,边则描述了操作之间的信息流,代表智能体之间的通信渠道。多个智能体连接形成的复…...
信号检测和信道均衡的联系
1. 系统模型 假设一个通信系统的数学模型如下: 发送信号: s [ s 1 , s 2 , … , s N ] T \mathbf{s} [s_1, s_2, \dots, s_N]^T s[s1,s2,…,sN]T,其中 s i s_i si 是发送符号。信道矩阵: H \mathbf{H} H(…...
优化线程池关闭机制以避免无限循环
引言 在多线程编程中,正确关闭线程池是一个重要的任务,以确保程序的稳定性和资源的有效利用。本文将探讨一种常见的线程池关闭机制,并提出优化建议,以避免无限循环和资源浪费。 问题描述 在实际开发中,我们经常使用…...
持久性HTTPVS.非持久性HTTP
1. HTTP协议基础 HTTP(HyperText Transfer Protocol)是Web通信的核心协议,定义了客户端(浏览器)与服务器之间传输数据的规则。 在HTTP/1.0及之前的版本中,默认使用非持久性连接,而HTTP/1.1及更…...
自动化UI测试 | 什么是测试驱动开发(TDD)和行为驱动开发(BDD)?有何区别?
TDD(测试驱动开发)和BDD(行为驱动开发)是两种独特的软件开发技术,它们在测试的内容和方式上有所不同。尽管名称相似,但服务于不同的目的。 什么是TDD? TDD代表测试驱动开发。它是一个过程&…...
在 PyCharm 中接入deepseek的API的各种方法
在 PyCharm 中接入 DeepSeek 的 API,通常需要以下步骤: 1. 获取 DeepSeek API 密钥 首先,确保你已经在 DeepSeek 平台上注册并获取了 API 密钥(API Key)。如果没有,请访问 DeepSeek 的官方网站注册并申请 …...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
