当前位置: 首页 > news >正文

如何在不依赖函数调用功能的情况下结合工具与大型语言模型

当大型语言模型(LLM)原生不支持函数调用功能时,如何实现智能工具调度?本文通过自然语言解析+结构化输出控制的方法来实现。

GitHub代码地址

核心实现步骤

  1. 定义工具函数
    使用@tool装饰器声明可调用工具:
from langchain_core.tools import tool@tool
def multiply_by_max(a: int, b: list[int]
) -> int:"""将a乘以b列表中的最大值"""return a * max(b)@tool
def divide_by(a: float, b: float) -> float:"""将a除以b"""return a / b
  1. 构建响应模型
    使用Pydantic定义结构化响应格式:
from pydantic import BaseModel, Fieldclass Response(BaseModel):name: str = Field(None, description="调用的函数名称")args: dict = Field(None, description="函数参数")
  1. 创建输出解析器
from langchain_core.output_parsers import PydanticOutputParserparser = PydanticOutputParser(pydantic_object=Response)
  1. 设计提示模板
from langchain_core.prompts import ChatPromptTemplateprompt = ChatPromptTemplate.from_messages([("human", """请根据需求从下列函数中选择合适的工具:可用工具:\n{functions}\n输出格式:\n{format_instructions}问题:{query}""")
]).partial(functions=[tool.args_schema.model_json_schema() for tool in [multiply_by_max, divide_by]],format_instructions=parser.get_format_instructions()
)

工作原理

  1. 自然语言解析:LLM分析用户query的语义
  2. 工具匹配:根据函数描述自动选择最合适的工具
  3. 参数提取:从自然语言中提取结构化参数
  4. 格式化输出:生成符合预定格式的JSON响应

示例演示

示例1:数学计算

chain = prompt | ChatOpenAI(model="qwen-max") | parser
result = chain.invoke("请将3乘以一至九的最大值")
# 输出:
# name='multiply_by_max', args={'a':3, 'b':[1,2,3,4,5,6,7,8,9]}

示例2:无匹配工具

result = chain.invoke("查询北京天气")
# 输出:
# name=None, args=None

相关文章:

如何在不依赖函数调用功能的情况下结合工具与大型语言模型

当大型语言模型(LLM)原生不支持函数调用功能时,如何实现智能工具调度?本文通过自然语言解析结构化输出控制的方法来实现。 GitHub代码地址 核心实现步骤 定义工具函数 使用tool装饰器声明可调用工具: from langcha…...

【Linux AnolisOS】关于Docker的一系列问题。尤其是拉取东西时的网络问题,镜像源问题。

AnolisOS 8中使用Docker部署(全)_anolis安装docker-CSDN博客 从在虚拟机安装龙蜥到安装docker上面这篇文章写的很清晰了,我重点讲述我解决文章里面问题一些的方法。 问题1: docker: Get https://registry-1.docker.io/v2/: net/h…...

【Elasticsearch】Mapping概述

以下是Elasticsearch中提到的关于Mapping的各模块概述: --- 1.Dynamic mapping(动态映射) 动态映射是指Elasticsearch在索引文档时,自动检测字段类型并创建字段映射的过程。当你首次索引一个文档时,Elasticsearch会根…...

GPT-4o悄然升级:能力与个性双突破,AI竞技场再掀波澜

在大模型竞技场中,GPT-4o悄悄发布了全新版本,凭借其卓越的多项能力,迅速超越了DeepSeek-R1,成功登上并列第一的位置。这次更新不仅在数学(第6名)上有所突破,还在创意写作、编程、指令遵循、长文…...

如何选择合适的超参数来训练Bert和TextCNN模型?

选择合适的超参数来训练Bert和TextCNN模型是一个复杂但关键的过程,它会显著影响模型的性能。以下是一些常见的超参数以及选择它们的方法: 1. 与数据处理相关的超参数 最大序列长度(max_length) 含义:指输入到Bert模…...

C# SpinLock 类 使用详解

总目录 前言 SpinLock 是 C# 中一种轻量级的自旋锁,属于 System.Threading 命名空间,专为极短时间锁竞争的高性能场景设计。它通过忙等待(自旋)而非阻塞线程来减少上下文切换开销,适用于锁持有时间极短(如…...

【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题

【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题 【承接商业广告,如需商业合作请+v17740568442】 文章目录 【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题问题描述:解决方法方法一:手动中断并重启下载方法二:使用 Bash 脚本自动化下载在…...

机器学习所需要的数学知识【01】

总览 导数 行列式 偏导数 概理论 凸优化-梯度下降 kkt条件...

4.【线性代数】——矩阵的LU分解

四 矩阵的LU分解 1. AB的逆矩阵2. 转置矩阵3. ALU3.1 2x2矩阵3.2 3x3矩阵3.3 nxn的矩阵分解的次数? 1. AB的逆矩阵 { ( A B ) ( B − 1 A − 1 ) I ( B − 1 A − 1 ) ( A B ) I ⇒ ( A B ) − 1 B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) I\\ (B^{-1}A^…...

【清晰教程】本地部署DeepSeek-r1模型

【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面-CSDN博客 目录 Ollama 安装Ollama DeepSeek-r1模型 安装DeepSeek-r1模型 Ollama Ollama 是一个开源工具,专注于简化大型语言模型(LLMs)的本地部署和管理。它允许用户在本地计算机…...

Spring Cloud工程搭建

目录 工程搭建 搭建父子工程 创建父工程 Spring Cloud版本 创建子项目-订单服务 声明项⽬依赖 和 项⽬构建插件 创建子项目-商品服务 声明项⽬依赖 和 项⽬构建插件 工程搭建 因为拆分成了微服务,所以要拆分出多个项目,但是IDEA只能一个窗口有一…...

使用Redis实现分布式锁,基于原本单体系统进行业务改造

一、单体系统下&#xff0c;使用锁机制实现秒杀功能&#xff0c;并限制一人一单功能 1.流程图&#xff1a; 2.代码实现&#xff1a; Service public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderSe…...

【MediaTek】 T750 openwrt-23.05编 cannot find dependency libexpat for libmesode

MediaTek T750 T750 采用先进的 7nm 制程,高度集成 5G 调制解调器和四核 Arm CPU,提供较强的功能和配置,设备制造商得以打造精巧的高性能 CPE 产品,如固定无线接入(FWA)路由器和移动热点。 MediaTek T750 平台是一款综合的芯片组,集成了 5G SoC MT6890、12nm 制程…...

CHARMM-GUI EnzyDocker: 一个基于网络的用于酶中多个反应状态的蛋白质 - 配体对接的计算平台

❝ "CHARMM-GUI EnzyDocker for Protein−Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes"介绍了 CHARMM-GUI EnzyDocker&#xff0c;这是一个基于网络的计算平台&#xff0c;旨在简化和加速 EnzyDock 对接模拟的设置过程&…...

c# 2025/2/17 周一

16. 《表达式&#xff0c;语句详解4》 20 未完。。 表达式&#xff0c;语句详解_4_哔哩哔哩_bilibili...

vite【详解】常用配置 vite.config.js / vite.config.ts

官网 https://cn.vitejs.dev/guide/ vite 常用配置 Vite 配置文件通常是 vite.config.js &#xff08;使用 CommonJS 语法&#xff09;或者 vite.config.ts&#xff08;使用 TypeScript 语法&#xff09;&#xff0c;默认内容为 import { defineConfig } from vite import vue…...

最新智能优化算法: 阿尔法进化(Alpha Evolution,AE)算法求解23个经典函数测试集,MATLAB代码

一、阿尔法进化算法 阿尔法进化&#xff08;Alpha Evolution&#xff0c;AE&#xff09;算法是2024年提出的一种新型进化算法&#xff0c;其核心在于通过自适应基向量和随机步长的设计来更新解&#xff0c;从而提高算法的性能。以下是AE算法的主要步骤和特点&#xff1a; 主…...

用于可靠工业通信的5G-TSN集成原型:基于帧复制与消除可靠性的研究

论文标题 中文标题&#xff1a;用于可靠工业通信的5G-TSN集成原型&#xff1a;基于帧复制与消除可靠性的研究 英文标题&#xff1a;5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability 作者信息 …...

HaProxy源码安装(Rocky8)

haproxy具有高性能、高可用性、灵活的负载均衡策略和强大的将恐和日志功能&#xff0c;是法国开发者 威利塔罗(Willy Tarreau)在2000年使用C语言开发的一个开源软件&#xff0c;是一款具 备高并发(一万以上)、高性能的TCP和HTTP负载均衡器&#xff0c;支持基于cookie的持久性&a…...

shell脚本备份MySQL数据库和库下表

目录 注意&#xff1a; 一.脚本内容 二.执行效果 三.创建定时任务 注意&#xff1a; 以下为对MySQL5.7.42版本数据库备份shell脚本参考运行备份的机器请确认mysqldump版本>5.7&#xff0c;否则备份参数--set-gtid-purgedOFF无效&#xff0c;考虑到一般数据库节点和备份…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...