深入浅出:CUDA是什么,如何利用它进行高效并行计算
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(Compute Unified Device Architecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。
一、什么是CUDA?
CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种并行计算平台和编程模型,旨在充分利用现代GPU的强大计算能力。它允许开发者使用C、C++和Fortran等熟悉的编程语言,通过特定的API(应用程序接口)在GPU上执行复杂的计算任务,从而实现通用计算(GPGPU,General-Purpose computing on Graphics Processing Units)。
1. CUDA的历史背景
CUDA的发布可以追溯到2006年,最初是为了解决CPU在处理大规模并行任务时的局限性。随着深度学习和大数据应用的兴起,传统CPU的计算能力逐渐无法满足需求。因此,NVIDIA引入CUDA,使开发者能够在GPU上以更高效的方式处理海量数据。
2. CUDA的架构
CUDA架构包括多个组件,主要包括:
- CUDA核心:这些是GPU中的处理单元,负责执行并行计算任务。每个CUDA核心可以同时执行多个线程。
- 内存层次结构:CUDA提供多种类型的内存,包括全局内存、共享内存、常量内存和寄存器等。这些内存类型在性能和访问速度上各具特点,开发者可以根据需求合理选择使用。
- 驱动程序和运行时库:CUDA的驱动程序管理GPU的资源调度,而运行时库则提供了用于内核执行、内存管理和数据传输的API。
3. CUDA的优势
CUDA具有几个显著的优势,使其成为高性能计算的理想选择:
- 并行处理能力:GPU内部有数千个CUDA核心,可以同时处理成千上万的线程,从而实现极高的并行度。
- 灵活性:CUDA支持多种编程语言,使得开发者可以在熟悉的环境中进行开发,降低了学习成本。
- 高效的资源利用:CUDA允许开发者直接控制GPU资源的分配和使用,从而最大化计算能力。
- 丰富的生态系统:NVIDIA提供了多个针对特定领域的库和工具(如cuBLAS、cuDNN、TensorRT),使得开发者可以快速构建高性能应用。
二、CUDA的基本原理
CUDA的基本原理围绕如何将计算任务有效地分配到GPU的多个处理单元上,以实现高效的并行计算。下面我们详细探讨CUDA的核心概念和工作机制。
1. 网格和线程块
CUDA将计算任务组织为网格(Grid)和线程块(Block)的结构。每个网格可以包含多个线程块,每个线程块又包含多个线程。这种分层结构使得开发者可以灵活地管理计算资源。
-
线程块(Block):线程块是CUDA中执行的基本单位。每个线程块由多个线程组成,它们可以共享内存并进行高效的通信,适合处理需要线程间协作的任务。一个线程块的最大线程数通常取决于GPU的架构。
-
网格(Grid):网格是由多个线程块组成的整体结构。每个网格可以有不同的维度(例如一维、二维或三维),这使得CUDA可以灵活地处理各种数据结构,如图像、矩阵等。
2. 内核函数(Kernel)
内核函数是由开发者编写的在GPU上并行执行的函数。当开发者在主机(CPU)代码中调用内核时,CUDA会在GPU上启动多个线程来执行这个内核。每个线程通过其唯一的线程ID来访问和处理数据。例如,在一个一维数组的加法运算中,每个线程可以被分配处理数组中的一个元素。
3. 线程并行
当内核函数在GPU上执行时,CUDA会创建许多线程并行运行。每个线程可以独立执行计算任务,这种高度的并行性使得CUDA在处理大规模数据时具有显著的性能优势。CUDA采用SIMT(Single Instruction, Multiple Threads)模型,使得同一指令可以在多个线程中并行执行。
4. 内存模型
CUDA的内存模型是理解其性能的关键。它包括:
- 全局内存:所有线程都能访问的内存区域,适合存储大量数据,但访问延迟较高。
- 共享内存:线程块内的线程共享的高速内存,适合需要快速交换数据的任务。
- 常量内存:只读内存,适合存储在内核执行期间不会改变的数据。
- 寄存器:每个线程的私有存储区域,访问速度最快,适合存储临时变量。
合理使用这些内存类型,可以显著提高计算效率。例如,使用共享内存可以减少对全局内存的访问次数,从而提高性能。
5. 数据传输
在使用CUDA进行计算时,数据需要在主机和GPU之间进行传输。这通常包括将数据从主机内存复制到设备内存(GPU),然后在GPU上执行内核,最后将计算结果从设备内存复制回主机内存。由于数据传输的延迟会影响整体性能,开发者需要尽量减少数据传输的频率和大小,以实现最佳性能。
6. CUDA编程模型
CUDA编程模型使开发者能够以简洁的方式编写并行代码。通过使用简单的CUDA API调用,开发者可以很容易地将现有的串行代码迁移到并行执行,不必深入了解底层的硬件细节。这种抽象层使得CUDA不仅适合高性能计算专家,也适合广泛的开发者使用。
通过理解CUDA的基本原理,你将能够更有效地利用GPU进行高性能计算。无论是在科学研究、深度学习还是图像处理等领域,掌握CUDA的应用都将为你的项目带来显著的性能提升。
三、CUDA的优势
CUDA作为一种强大的并行计算平台,具有多项显著的优势,使其成为高性能计算的理想选择。以下是CUDA的一些主要优势:
1. 高度并行处理能力
CUDA能够充分利用现代GPU的并行计算能力。与传统的CPU相比,GPU拥有更多的计算核心,能够同时处理成千上万的线程。这种高度的并行性使得CUDA在处理大规模数据和复杂计算时表现出色,尤其是在需要同时执行相同操作的大量数据时(例如矩阵运算、图像处理等)。
2. 灵活的编程模型
CUDA扩展了C/C++编程语言,使得开发者能够在熟悉的环境中编写并行代码。通过简单的API调用,开发者可以将已有的串行算法转化为并行算法,降低了学习成本和开发难度。此外,CUDA还支持其他编程语言,如Fortran和Python,使得其适用的开发环境更加广泛。
3. 高效的资源利用
CUDA允许开发者对GPU的资源进行精细管理。通过合理配置线程块和网格的结构,开发者可以最大化利用GPU的计算能力。CUDA的内存管理机制使得开发者可以优化内存访问模式,减少内存带宽瓶颈,从而提高应用程序的整体性能。
4. 丰富的生态系统
NVIDIA为CUDA提供了丰富的库和工具,涵盖了多个领域的需求。常用的CUDA库包括:
- cuBLAS:用于高性能线性代数运算的库。
- cuDNN:用于深度学习中的神经网络运算的库。
- TensorRT:用于深度学习推理优化的高性能推理引擎。
此外,NVIDIA还提供了强大的开发工具(如Nsight Visual Studio Edition、CUDA-GDB等)用于调试和优化CUDA应用程序,帮助开发者提高开发效率。
5. 社区和文档支持
CUDA拥有一个庞大的开发者社区,提供丰富的资源和支持。NVIDIA官方网站上有详尽的文档、示例代码和培训材料,使得开发者能够快速上手并解决问题。通过参与社区讨论和学习,开发者可以不断提升自己的技能。
6. 持续更新和创新
NVIDIA不断对CUDA进行更新和优化,以适应新硬件和新应用的需求。新版本的CUDA通常会带来新的功能、性能优化和更好的硬件支持,这使得开发者能够始终利用最新的技术进行开发。
四、CUDA的应用场景
CUDA的高性能计算能力使其在多个领域得到了广泛应用。以下是一些典型的CUDA应用场景:
1. 深度学习
深度学习是CUDA最活跃的应用领域之一。训练深度神经网络通常需要处理大量的数据和复杂的计算,CUDA能够加速反向传播和前向传播过程,显著缩短训练时间。许多深度学习框架(如TensorFlow、PyTorch等)都内置了CUDA支持,使研究人员和开发者能够轻松利用GPU进行训练和推理。
2. 科学计算
在物理、化学、气象等科学研究领域,CUDA被广泛应用于数值模拟、计算流体动力学(CFD)、有限元分析(FEA)等复杂计算任务。GPU的强大并行计算能力使得科学家能够更快地进行数据分析和建模,推动了科学研究的进步。
3. 图像和视频处理
CUDA在图像处理和计算机视觉领域中同样大放异彩。图像过滤、边缘检测、图像分割、视频编码等任务可以通过CUDA实现实时处理。利用GPU并行计算的能力,可以在短时间内处理高分辨率图像和视频流,广泛应用于安防监控、自动驾驶、视频编辑等领域。
4. 金融计算
在金融行业,CUDA被用于高频交易、风险管理和金融建模等场景。GPU能够快速处理大量的市场数据和复杂的数学模型,使得金融机构能够更迅速地作出决策并优化交易策略。
5. 生物信息学
生物信息学领域面临着大规模数据集和复杂计算的挑战。CUDA被应用于基因组测序、蛋白质折叠模拟和生物分子动力学等领域,使得研究人员能够在短时间内分析大规模的生物数据,推动医学研究和个性化医疗的发展。
6. 机器人与计算机视觉
在机器人技术和计算机视觉中,CUDA被用于实时图像处理和目标检测。通过加速图像处理和机器学习算法,开发者可以实现更加智能的机器人系统,使其能够快速识别和处理周围环境的信息。
7. 虚拟现实和增强现实
随着虚拟现实(VR)和增强现实(AR)技术的发展,CUDA在实时图形渲染和数据处理中的应用也越来越广泛。通过利用GPU的并行计算能力,开发者能够实现更高质量的3D渲染和实时交互,为用户提供更加沉浸式的体验。
CUDA作为一项强大的并行计算技术,凭借其高效的计算能力和广泛的应用场景,正在推动各个领域的创新和发展。无论是在学术研究、工业应用还是日常生活中,CUDA都在不断提升计算效率,推动技术的进步。掌握CUDA将为你在高性能计算领域开辟新的可能性。
五、如何开始使用CUDA?
要开始使用CUDA进行高性能计算,涉及多个步骤,从硬件的准备到软件的安装,再到学习和实践。以下是一个详细的指南,帮助你快速上手CUDA。
1. 硬件要求
首先,确保你的计算机配备了支持CUDA的NVIDIA显卡。大多数现代NVIDIA显卡都支持CUDA功能,例如GeForce、Quadro和Tesla系列。可以通过访问NVIDIA官方网站查看你的显卡是否支持CUDA。
在选择显卡时,考虑以下几点:
- CUDA核心数量:更多的CUDA核心通常意味着更强的并行计算能力。
- 内存大小:较大的显存可以处理更大的数据集,尤其是在深度学习和图像处理等应用中。
- 性能:可以参考第三方的基准测试和评测,选择适合你需求的显卡。
2. 安装CUDA Toolkit
一旦确认硬件支持CUDA,接下来的步骤是安装CUDA Toolkit。CUDA Toolkit包含了编译器、库、文档和示例代码,帮助开发者开始CUDA编程。
安装步骤:
- 访问NVIDIA官方网站:前往 CUDA Toolkit下载页面。
- 选择版本:选择与你的操作系统和显卡相匹配的CUDA版本。请注意,某些新版本的CUDA可能不支持较旧的显卡。
- 下载并安装:按照说明下载并安装CUDA Toolkit。安装过程中,可以选择安装相关的驱动程序和示例代码,确保一切正常运行。
- 配置环境变量:安装完成后,根据你的操作系统设置环境变量,以便在命令行中访问CUDA工具。例如,在Windows中,你需要将CUDA的
bin和lib目录添加到系统的PATH环境变量中。
3. 安装NVIDIA驱动程序
CUDA Toolkit需要NVIDIA显卡驱动程序的支持。通常,在安装CUDA Toolkit时会提示你安装适合的驱动程序。如果你已经安装了驱动程序,确保它是最新版本,以便获得最佳性能和兼容性。
4. 学习基础知识
为了高效地使用CUDA,建议了解一些基础知识:
- CUDA编程模型:学习CUDA的基本概念,包括内核函数、线程、线程块和网格的结构。
- 内存管理:理解CUDA的内存模型,包括全局内存、共享内存和寄存器的使用。
- 编程语言:熟悉C/C++编程语言,因为CUDA的语法是基于C/C++的。
可以通过以下资源来学习CUDA:
- 官方文档:NVIDIA提供的CUDA文档是学习CUDA的最好起点,其中有详细的API参考和编程指南。
- 在线教程:网络上有许多免费的在线教程和视频课程,适合初学者和进阶用户。
- 书籍:有多本关于CUDA编程的书籍,例如《CUDA by Example》及《Programming Massively Parallel Processors》,适合深入学习。
5. 编写你的第一个CUDA程序
在学习基础知识后,可以尝试编写你的第一个CUDA程序。以下是一个简单的示例,演示如何在GPU上执行向量相加的操作:
#include <iostream>
#include <cuda.h>// CUDA内核函数
__global__ void vectorAdd(const float* A, const float* B, float* C, int N) {int index = threadIdx.x + blockIdx.x * blockDim.x;if (index < N) {C[index] = A[index] + B[index];}
}int main() {int N = 1<<20; // 向量大小size_t size = N * sizeof(float);// 主机内存分配float *h_A = (float*)malloc(size);float *h_B = (float*)malloc(size);float *h_C = (float*)malloc(size);// 初始化向量for (int i = 0; i < N; i++) {h_A[i] = static_cast<float>(i);h_B[i] = static_cast<float>(i);}// 设备内存分配float *d_A, *d_B, *d_C;cudaMalloc(&d_A, size);cudaMalloc(&d_B, size);cudaMalloc(&d_C, size);// 将数据从主机复制到设备cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);// 执行内核int threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);// 将结果从设备复制回主机cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);// 验证结果for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {std::cerr << "Error at index " << i << std::endl;break;}}// 释放内存cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);free(h_A);free(h_B);free(h_C);std::cout << "Computation completed successfully!" << std::endl;return 0;
}
6. 调试和优化
在编写和运行CUDA程序时,调试和优化是不可或缺的一部分。NVIDIA提供了多种工具来帮助开发者调试和优化CUDA代码:
- NVIDIA Nsight:集成开发环境中的调试和性能分析工具,支持CUDA应用程序的调试和优化。
- CUDA-GDB:用于调试CUDA程序的命令行工具,可以帮助你逐步检查CUDA内核的执行。
- Profiler:NVIDIA提供的性能分析工具,用于分析CUDA应用的性能瓶颈并提供优化建议。
7. 实践项目
通过实际项目加深对CUDA的理解。可以尝试以下项目:
- 实现图像处理算法(如模糊、锐化、边缘检测)。
- 开发机器学习模型(如KNN、SVM等)并利用GPU加速训练过程。
- 使用CUDA实现数值模拟(如物理模拟、流体动力学等)。
- 尝试迁移已有的CPU算法到CUDA,以评估性能提升。
8. 参与社区和开源项目
加入CUDA开发者社区,参与讨论和分享经验,可以帮助你更好地学习和成长。你可以在论坛、社交媒体平台或GitHub上找到相关的CUDA开源项目,参与其中,提升自己的实战能力。
六、结语
通过以上步骤,你将能够顺利开始使用CUDA进行高性能计算。随着对CUDA的深入理解和实践经验的积累,你将能够充分发挥GPU的强大计算能力,推动项目的性能提升和创新发展。无论是科研、工程应用还是开发新技术,CUDA都将为你打开新的可能性。
相关文章:
深入浅出:CUDA是什么,如何利用它进行高效并行计算
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(Compute Unified Device Architecture),这是一种并行计算平台和编程模…...
Zotero PDF Translate插件配置百度翻译api
Zotero PDF Translate插件可以使用几种翻译api,虽然谷歌最好用,但是由于众所周知的原因,不稳定。而cnki有字数限制,有道有时也不行。其他的翻译需要申请密钥。本文以百度为例,进行申请 官方有申请教程: Zot…...
利用acme.sh 申请 Google 免费证书
1.Google API权限准备 获取 EAB 密钥 ID 和 HMAC 登录你的 GCP 控制台面板,进入 Public Certificate Authority API 管理页面(https://console.cloud.google.com/apis/library/publicca.googleapis.com)点击启动: 或者直接在下一…...
腾讯云cloudstudio使用笔记(一)
0、计划及目标 1)、这个系列用于将cloudstudio快速入门将前端代码在cloudstudio中从git仓库拉下来并运行—本文档的目标已实现 2)、基于cloudstudio和腾讯的ai代码助手腾讯自己满血的deepseek写代码,减少前端工作量—待补充 3)、…...
python自动化制作常规的日报数据可视化
python自动化制作常规的日报数据可视化 作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏Ǵ…...
C语言:在主函数中输入十个等长的字符串。用另一函数对它们排序,然后在主函数输出这10个已排好序的字符串。
(1)用字符型二维数组 #include <stdio.h> #include <string.h> int main() {void sort(char s[][6]);int i;char str[10][6];printf("input 10 strings:\n");for (i0;i<10;i)scanf("%s",str[i]);sort(str);printf(&…...
构建高效智能对话前端:基于Ant Design X 的deepseek对话应用
文章目录 实现的效果前言Ant Design X添加欢迎组件创建对话气泡存储对话历史渲染对话气泡 输入组件WebSocket 连接总结 实现的效果 待机页面: 等待页面: 完成页面: 前言 随着人工智能技术的飞速发展,大模型对话系统已成为…...
SQLMesh 系列教程5- 详解SQL模型
本文将详细介绍 SQLMesh 的 SQL 模型组成要素及其在实际项目中的应用。SQLMesh 是一个强大的数据工程工具,其 SQL 模型由 MODEL DDL、预处理语句、主查询、后处理语句以及可选的 ON VIRTUAL UPDATE 语句组成。我们将通过一个电商平台每日销售报告的实例,…...
本地DeepSeek模型GGUF文件转换为PyTorch格式
接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之…...
Flutter:动态表单(在不确定字段的情况下,生成动态表单)
关于数据模型:模型就是一种规范约束,便于维护管理,在不确定表单内会出现什么数据时,就没有模型一说。 这时就要用到动态表单(根据接口返回的字段,生成动态表单) 1、观察数据格式,定义…...
【Python项目】文本相似度计算系统
【Python项目】文本相似度计算系统 技术简介:采用Python技术、Django技术、MYSQL数据库等实现。 系统简介:本系统基于Django进行开发,包含前端和后端两个部分。前端基于Bootstrap框架进行开发,主要包括系统首页,文本分…...
C# ref 和 out 的使用详解
总目录 前言 在 C# 编程中,ref 和 out 是两个非常重要的关键字,它们都用于方法参数的传递,但用途和行为却有所不同。今天,我们就来深入探讨一下这两个关键字的用法和区别,让你在编程中能够得心应手地使用它们。 一、什…...
Ubuntu 24.04.1 LTS 本地部署 DeepSeek 私有化知识库
文章目录 前言工具介绍与作用工具的关联与协同工作必要性分析 1、DeepSeek 简介1.1、DeepSeek-R1 硬件要求 2、Linux 环境说明2.1、最小部署(Ollama DeepSeek)2.1.1、扩展(非必须) - Ollama 后台运行、开机自启: 2.2、…...
用 WOW.js 和 animate.css 实现动画效果
用 wow.js 就可以实现动画效果,但由于里面的动画样式太少,一般还会引入 animated.css 第一步:下载 选择合适的包管理器下载对应的内容 pnpm i wow.js animated.css --save 第二步:引入 在main.js中加入: import …...
1-知识图谱-概述和介绍
知识图谱:浙江大学教授 陈华军 知识图谱 1课时 http://openkg.cn/datasets-type/ 知识图谱的价值 知识图谱是有什么用? 语义搜索 问答系统 QA问答对知识图谱:结构化图 辅助推荐系统 大数据分析系统 自然语言理解 辅助视觉理解 例…...
flink jobgraph详细介绍
一、Flink JobGraph 的核心概念 JobGraph 是 Flink 作业的核心执行计划,它描述了作业的任务拓扑结构和数据流关系。JobGraph 由以下几部分组成: 顶点(Vertex) 每个顶点代表一个任务(Task),例如…...
使用nginx+rtmp+ffmpeg实现桌面直播
使用nginxrtmpffmpeg实现桌面直播 流媒体服务器搭建 docker run docker镜像基于添加了rtmp模块的nginx,和ffmpeg docker pull alfg/nginx-rtmp docker run -d -p 1935:1935 -p 8080:80 --namenginx-rtmp alfg/nginx-rtmprtmp模块说明 进入容器内部查看 docker…...
每日一题——将数字字符串转化为IP地址
将数字字符串转化为IP地址 题目描述解题思路回溯法步骤分解 代码实现全局变量有效性验证函数回溯函数主函数完整代码 复杂度分析关键点说明总结 这题难度还挺大的,整体上实现并不容易。建议参考视频 和https://programmercarl.com/0093.%E5%A4%8D%E5%8E%9FIP%E5%9C%…...
机器学习数学基础:25.随机变量分布详解
一、随机变量与分布函数的基本概念 (一)什么是随机变量? 在概率论领域,随机变量是将随机试验的结果进行数值化的关键概念。它就像一座桥梁,把抽象的随机事件和具体的数学分析连接起来。 举例来说,在一个…...
香港电讯与Zenlayer达成战略合作,拓展全球互联生态圈
作为主要国际金融与贸易中心,香港一直是连系中国内地及全球市场的重要门户。香港电讯作为本地领先的综合电讯服务提供商,拥有广泛的网络资源和深厚的技术专长,一直支持国内企业“走出去”和外资企业“走进来”。而旗下由PCCW Global营运的Con…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
