当前位置: 首页 > news >正文

【个人开发】deepspeed+Llama-factory 本地数据多卡Lora微调【完整教程】

文章目录

  • 1.背景
  • 2.微调方式
    • 2.1 关键环境版本信息
    • 2.2 步骤
    • 2.2.1 下载llama-factory
    • 2.2.2 准备数据集
    • 2.2.3 微调模式
      • 2.2.3.1 zero-1微调
      • 2.2.3.2 zero-2微调
      • 2.2.3.3 zero-3微调
      • 2.2.3.4 单卡Lora微调
    • 2.2.4 实验
      • 2.2.4.1 实验1:多GPU微调-zero1
      • 2.2.4.2 实验2:多GPU微调-zero2
      • 2.2.4.3 实验3:多GPU微调-zero3
      • 2.2.4.4 实验4:Lora单卡微调
    • 2.2.5 合并大模型并启动
      • 2.2.5.1 方法一:Llama-factory合并,并使用ollama调用大模型
      • 2.2.5.2 方法二:Llama-factory合并,并使用vllm启动模型服务
  • 3 踩坑经验
    • 3.1 微调踩坑
      • 3.1.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.
      • 3.1.2 问题二: ValueError: Target modules {'c_attn'} not found in the base model. Please check the target modules and try again.
      • 3.1.3 问题三: RuntimeError: The size of tensor a (1060864) must match the size of tensor b (315392) at non-singleton dimension 0。
      • 3.1.4 问题四: 训练效率问题

1.背景

上一篇文章写到,【个人开发】macbook m1 Lora微调qwen大模型

该微调方式,同样适用于GPU,只不过在train.py脚本中,针对device,调整为cuda即可。

如果数据量过大的话,单卡微调会存在瓶颈,因此考虑多GPU进行微调。

网上搜罗了一圈,多卡微调的常用方案:deepspeed+Llama-factory

本文主要记录该方式的微调情况,仅为个人学习记录

2.微调方式

2.1 关键环境版本信息

模块版本
python3.10
CUDA12.6
torch2.5.1
peft0.12.0
transformers4.46.2
accelerate1.1.1
trl0.9.6
deepspeed0.15.4

2.2 步骤

2.2.1 下载llama-factory

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

2.2.2 准备数据集

数据集采用网上流传的《甄嬛传》。

数据源地址:huanhuan.json

数据集结构如下。

// 文件命名:huanhuan.json
[{"instruction": "小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——","input": "","output": "嘘——都说许愿说破是不灵的。"},...
]

其次,还得准备数据集信息【dataset_info.json】,因为是本地微调,所以微调时现访问dataset_info,再指定到具体的数据集中。

{"identity": {"file_name": "test_data.json"}
}

注意文本的数据集的格式必须为,json,不然会报错。

2.2.3 微调模式

2.2.3.1 zero-1微调

配置参考zero-3的配置,修改了一下zero_optimization.stage的参数。

// 文件命名:ds_config_zero1.json
{"fp16": {"enabled": "auto","loss_scale": 0,"loss_scale_window": 1000,"initial_scale_power": 16,"hysteresis": 2,"min_loss_scale": 1},"bf16": {"enabled": "auto"},"optimizer": {"type": "AdamW","params": {"lr": "auto","betas": "auto","eps": "auto","weight_decay": "auto"}},"scheduler": {"type": "WarmupLR","params": {"warmup_min_lr": "auto","warmup_max_lr": "auto","warmup_num_steps": "auto"}},"zero_optimization": {"stage": 1,"offload_optimizer": {"device": "none","pin_memory": true},"offload_param": {"device": "none","pin_memory": true},"overlap_comm": true,"contiguous_gradients": true,"sub_group_size": 1e9,"reduce_bucket_size": "auto","stage3_prefetch_bucket_size": "auto","stage3_param_persistence_threshold": "auto","stage3_max_live_parameters": 1e9,"stage3_max_reuse_distance": 1e9,"stage3_gather_16bit_weights_on_model_save": true},"gradient_accumulation_steps": 4,"gradient_clipping": "auto","steps_per_print": 100,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

微调脚本

# run_train_bash_zero_1.sh
#!/bin/bash
# 记录开始时间
START=$(date +%s.%N)CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch  src/train.py \--deepspeed ds_config_zero1.json \--stage sft \--do_train True \--model_name_or_path /root/ai_project/fine-tuning-by-lora/models/model/qwen/Qwen2___5-7B-Instruct \--finetuning_type lora \--template qwen \--dataset_dir /root/ai_project/fine-tuning-by-lora/dataset/ \--dataset identity \--cutoff_len 1024 \--num_train_epochs 30 \--max_samples 100000 \--learning_rate 5e-05 \--lr_scheduler_type cosine \--warmup_steps 10 \--per_device_train_batch_size 4 \--gradient_accumulation_steps 4 \--max_grad_norm 1.0 \--logging_steps 10 \--save_steps 100 \--neftune_noise_alpha 0 \--lora_rank 8 \--lora_dropout 0.1 \--lora_alpha 32 \--lora_target q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj \--output_dir ./output/qwen_7b_ft/zero1/ \--bf16 True \--plot_loss True# 记录结束时间
END=$(date +%s.%N)# 计算运行时间
DUR=$(echo "$END - $START" | bc)# 输出运行时间
printf "Execution time: %.6f seconds\n" $DUR

2.2.3.2 zero-2微调

zero-2下述的配置中,调度器使用了AdamW,学习率在训练时候可以逐步下降。

// 文件命名:ds_config_zero2.json
{"fp16": {"enabled": "auto","loss_scale": 0,"loss_scale_window": 1000,"initial_scale_power": 16,"hysteresis": 2,"min_loss_scale": 1},"bf16": {"enabled": "auto"},"optimizer": {"type": "AdamW","params": {"lr": "auto","betas": "auto","eps": "auto","weight_decay": "auto"}},"zero_optimization": {"stage": 2,"offload_optimizer": {"device": "cpu","pin_memory": true}},"gradient_accumulation_steps": 4,"gradient_clipping": "auto","steps_per_print": 100,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

2.2.3.3 zero-3微调

本次微调采用zero-3的方式,因此在LLaMa-Factory目录下,新增配置文件。
相关配置可参考Llama-Factory提供的文件样例[./LLaMA-Factory/examples/deepspeed/]

在这里插入图片描述

// 文件命名:ds_config_zero3.json
{"fp16": {"enabled": "auto","loss_scale": 0,"loss_scale_window": 1000,"initial_scale_power": 16,"hysteresis": 2,"min_loss_scale": 1},"bf16": {"enabled": "auto"},"optimizer": {"type": "AdamW","params": {"lr": "auto","betas": "auto","eps": "auto","weight_decay": "auto"}},"scheduler": {"type": "WarmupLR","params": {"warmup_min_lr": "auto","warmup_max_lr": "auto","warmup_num_steps": "auto"}},"zero_optimization": {"stage": 3,"offload_optimizer": {"device": "none","pin_memory": true},"offload_param": {"device": "none","pin_memory": true},"overlap_comm": true,"contiguous_gradients": true,"sub_group_size": 1e9,"reduce_bucket_size": "auto","stage3_prefetch_bucket_size": "auto","stage3_param_persistence_threshold": "auto","stage3_max_live_parameters": 1e9,"stage3_max_reuse_distance": 1e9,"stage3_gather_16bit_weights_on_model_save": true},"gradient_accumulation_steps": "auto","gradient_clipping": "auto","steps_per_print": 100,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

微调脚本

# run_train_bash.sh 
#!/bin/bash
# 记录开始时间
START=$(date +%s.%N)
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch  src/train.py \--deepspeed ds_config_zero3.json \--stage sft \--do_train True \--model_name_or_path /root/ai_project/fine-tuning-by-lora/models/model/qwen/Qwen2___5-7B-Instruct \--finetuning_type lora \--template qwen \--dataset_dir /root/ai_project/fine-tuning-by-lora/dataset/ \--dataset identity \--cutoff_len 1024 \--num_train_epochs 5 \--max_samples 100000 \--per_device_train_batch_size 4 \--gradient_accumulation_steps 4 \--lr_scheduler_type cosine \--learning_rate 5e-04 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 5 \--save_steps 100 \--neftune_noise_alpha 0 \--lora_rank 8 \--lora_dropout 0.1 \--lora_alpha 32 \--lora_target q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj \--output_dir ./output/qwen_7b_ds/train_2025_02_13 \--bf16 True \--plot_loss True# 记录结束时间
END=$(date +%s.%N)
# 计算运行时间
DUR=$(echo "$END - $START" | bc)
# 输出运行时间
printf "Execution time: %.6f seconds\n" $DUR

说明一下上述一些关键参数:

参数版本
–deepspeed指定deepspeed加速微调方式
–model_name_or_path微调模型路径
–finetuning_type微调方式,这里用lora微调
–template训练和推理时构造 prompt 的模板,不同大语言模型的模板不一样,这里用的是qwen
–dataset_dir本地的数据集路径
–dataset指定dataset_info.json中哪个数据集
–lora_target应用 LoRA 方法的模块名称。
–output_dir模型输出路径。

模型微调参数可以参考:Llama-Factory参数介绍

其他参数,其实就是常规使用peft进行lora微调的常见参数,以及常见的微调参数,可以对照如下。

lora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False,r=8,lora_alpha=32,lora_dropout=0.1
)

2.2.3.4 单卡Lora微调

具体使用可以参考上一篇文章:【个人开发】macbook m1 Lora微调qwen大模型
也可以参考github项目:fine-tuning-by-Lora

微调代码如下。


torch_dtype = torch.halflora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False,r=8,lora_alpha=32,lora_dropout=0.1
)def train():# 加载模型model_dir = snapshot_download(model_id=model_id, cache_dir=f"{models_dir}/model", revision='master')if model_path != model_dir:raise Exception(f"model_path:{model_path} != model_dir:{model_dir}")model = AutoModelForCausalLM.from_pretrained(model_path,device_map=device, torch_dtype=torch_dtype)model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法# 加载数据df = pd.read_json(dataset_file)ds = Dataset.from_pandas(df)print(ds[:3])# 处理数据tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)tokenizer.pad_token = tokenizer.eos_tokendef process_func(item):MAX_LENGTH = 384  # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性input_ids, attention_mask, labels = [], [], []instruction = tokenizer(f"<|start_header_id|>user<|end_header_id|>\n\n{item['instruction'] + item['input']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokensresponse = tokenizer(f"{item['output']}<|eot_id|>", add_special_tokens=False)input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]if len(input_ids) > MAX_LENGTH:  # 做一个截断input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}tokenized_id = ds.map(process_func, remove_columns=ds.column_names)tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"])))# 加载lora权重model = get_peft_model(model, lora_config)# 训练模型training_args = TrainingArguments(output_dir=checkpoint_dir,per_device_train_batch_size=4,gradient_accumulation_steps=4,logging_steps=5,num_train_epochs=30,save_steps=100,learning_rate=5e-04,save_on_each_node=True,gradient_checkpointing=True,)trainer = Trainer(model=model,args=training_args,train_dataset=tokenized_id,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),)trainer.train()# 保存模型trainer.model.save_pretrained(lora_dir)tokenizer.save_pretrained(lora_dir)

2.2.4 实验

本次测试使用多GPU微调,测试多GPU微调跟单GPU微调的性能对比。

使用2,030条数据,epoch = 30 ,batch size = 4,Gradient Accumulation steps = 4

实验组实验类别步数耗时最终loss
实验1zero1微调48009:000.0101
实验2zero2微调48009:590.4757
实验3zero3微调4801:49:110.0746
实验4单卡lora微调38101:07:570.0009

初步结论:
1.基于实验1,实验3的对照,使用zero3微调,耗时明显提升的原因还是资源使用不合理【没充分使用GPU】。
2.基于实验1,实验3跟实验2的对照,实验2的损失下降比较慢的一个原因是因为使用的学习率调度器的问题。

2.2.4.1 实验1:多GPU微调-zero1

日志如下

[INFO|trainer.py:2369] 2025-02-18 09:44:50,875 >> ***** Running training *****
[INFO|trainer.py:2370] 2025-02-18 09:44:50,875 >>   Num examples = 2,030
[INFO|trainer.py:2371] 2025-02-18 09:44:50,875 >>   Num Epochs = 30
[INFO|trainer.py:2372] 2025-02-18 09:44:50,875 >>   Instantaneous batch size per device = 4
[INFO|trainer.py:2375] 2025-02-18 09:44:50,875 >>   Total train batch size (w. parallel, distributed & accumulation) = 128
[INFO|trainer.py:2376] 2025-02-18 09:44:50,875 >>   Gradient Accumulation steps = 4
[INFO|trainer.py:2377] 2025-02-18 09:44:50,875 >>   Total optimization steps = 480
[INFO|trainer.py:2378] 2025-02-18 09:44:50,878 >>   Number of trainable parameters = 20,185,088
.....
***** train metrics *****epoch                    =        30.0total_flos               = 234733999GFtrain_loss               =      1.0322train_runtime            =  0:09:00.75train_samples_per_second =     112.619train_steps_per_second   =       0.888
Figure saved at: ./output/qwen_7b_ft/zero1/training_loss.png

GPU使用情况。
在这里插入图片描述
loss下降情况如下:
在这里插入图片描述

2.2.4.2 实验2:多GPU微调-zero2

使用2,030条数据,8卡微调,微调参数如下,总共480步,耗时09:59。

[INFO|trainer.py:2369] 2025-02-17 12:53:54,461 >> ***** Running training *****
[INFO|trainer.py:2370] 2025-02-17 12:53:54,461 >>   Num examples = 2,030
[INFO|trainer.py:2371] 2025-02-17 12:53:54,461 >>   Num Epochs = 30
[INFO|trainer.py:2372] 2025-02-17 12:53:54,461 >>   Instantaneous batch size per device = 4
[INFO|trainer.py:2375] 2025-02-17 12:53:54,461 >>   Total train batch size (w. parallel, distributed & accumulation) = 128
[INFO|trainer.py:2376] 2025-02-17 12:53:54,461 >>   Gradient Accumulation steps = 4
[INFO|trainer.py:2377] 2025-02-17 12:53:54,461 >>   Total optimization steps = 480
[INFO|trainer.py:2378] 2025-02-17 12:53:54,465 >>   Number of trainable parameters = 20,185,088***** train metrics *****epoch                    =        30.0total_flos               = 234733999GFtrain_loss               =      1.6736train_runtime            =  0:09:59.38train_samples_per_second =     101.605train_steps_per_second   =       0.801
Figure saved at: ./output/qwen_7b_ft/zero2/training_loss.png

GPU使用情况如下:
在这里插入图片描述
损失下降情况:
在这里插入图片描述

2.2.4.3 实验3:多GPU微调-zero3

使用2,030条数据,8卡微调,微调参数如下,总共480步,耗时1:49:11。

[INFO|trainer.py:2369] 2025-02-17 13:07:48,438 >> ***** Running training *****
[INFO|trainer.py:2370] 2025-02-17 13:07:48,438 >>   Num examples = 2,030
[INFO|trainer.py:2371] 2025-02-17 13:07:48,438 >>   Num Epochs = 30
[INFO|trainer.py:2372] 2025-02-17 13:07:48,438 >>   Instantaneous batch size per device = 4
[INFO|trainer.py:2375] 2025-02-17 13:07:48,438 >>   Total train batch size (w. parallel, distributed & accumulation) = 128
[INFO|trainer.py:2376] 2025-02-17 13:07:48,438 >>   Gradient Accumulation steps = 4
[INFO|trainer.py:2377] 2025-02-17 13:07:48,438 >>   Total optimization steps = 480
[INFO|trainer.py:2378] 2025-02-17 13:07:48,442 >>   Number of trainable parameters = 20,185,088...***** train metrics *****epoch                    =       30.0total_flos               =   257671GFtrain_loss               =     0.3719train_runtime            = 1:49:11.88train_samples_per_second =      9.295train_steps_per_second   =      0.073
Figure saved at: ./output/qwen_7b_ft/zero3/training_loss.png
[WARNING|2025-02-17 14:57:11] llamafactory.extras.ploting:162 >> No metric eval_loss to plot.
[WARNING|2025-02-17 14:57:11] llamafactory.extras.ploting:162 >> No metric eval_accuracy to plot.
[INFO|modelcard.py:449] 2025-02-17 14:57:11,629 >> Dropping the following result as it does not have all the necessary fields:

GPU使用情况如下:

在这里插入图片描述
损失下降情况:
在这里插入图片描述

2.2.4.4 实验4:Lora单卡微调

单卡微调,总共需要3810步。
在这里插入图片描述

2.2.5 合并大模型并启动

2.2.5.1 方法一:Llama-factory合并,并使用ollama调用大模型

模型合并

利用Llama-factory的框架,配置llama3_lora_sft_qwen.yaml 文件,进行模型合并。

# llama3_lora_sft_qwen.yaml
### model
model_name_or_path: /root/ai_project/fine-tuning-by-lora/models/model/qwen/Qwen2___5-7B-Instruct
adapter_name_or_path: /root/ai_project/LLaMA-Factory/output/qwen_7b_ds/zero2/
template: qwen
trust_remote_code: true### export
export_dir: output/llama3_lora_sft_qwen
export_size: 5
export_device: gpu
export_legacy_format: false
llamafactory-cli export llama3_lora_sft_qwen.yaml

模型打包

合并完成后,会有直接生成Modelfile文件,可以直接打包到ollama中。

在这里插入图片描述

# ollama modelfile auto-generated by llamafactory
FROM .TEMPLATE """{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
<|im_start|>assistant
{{ else if eq .Role "assistant" }}{{ .Content }}<|im_end|>
{{ end }}{{ end }}"""SYSTEM """You are a helpful assistant."""PARAMETER stop "<|im_end|>"
PARAMETER num_ctx 4096

模型启动
ollama启动

ollama create llama3_lora_sft_qwen -f Modelfile

参考文章:大模型开发和微调工具Llama-Factory–>LoRA合并

2.2.5.2 方法二:Llama-factory合并,并使用vllm启动模型服务

模型的合并同方法一,之后使用vllm命令启动。

vllm命令启动模型服务

# 内置了vllm的qwen的template。
CUDA_VISIBLE_DEVICES=1,2,3,4 python3 -m vllm.entrypoints.openai.api_server \--model "/root/ai_project/LLaMA-Factory/output/merge/" \--port 6006 \--tensor-parallel-size 4 \--served-model-name Qwen2.5-7B-sft \--max-model-len 8192 \--dtype half \--host 0.0.0.0

模型服务接口调用

import requestsdef chat_with_vllm(prompt, port=6006):url = f"http://localhost:{port}/v1/chat/completions"headers = {"Content-Type": "application/json"}data = {"model": "Qwen2.5-7B-sft",  # 模型名称或路径"messages": [{"role": "user", "content": prompt}],"max_tokens": 512,"temperature": 0.7}response = requests.post(url, headers=headers, json=data)if response.status_code == 200:result = response.json()generated_text = result["choices"][0]["message"]["content"]print(generated_text.strip())else:print("Error:", response.status_code, response.text)# 示例调用
chat_with_vllm("你是谁?", port=6006)

服务日志:
在这里插入图片描述
说明:日志中可以看到template。

调用结果:
在这里插入图片描述

3 踩坑经验

3.1 微调踩坑

3.1.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.

如果你脚本的启动参数,–dataset identity。而dataset_info.json中的数据信息,没有“identity”这个key,则会出现这个报错,只要确保你dataset_info.json中存在该key即可。

3.1.2 问题二: ValueError: Target modules {‘c_attn’} not found in the base model. Please check the target modules and try again.

如果你脚本的启动参数,–lora_target参数设为常见的c_attn参数,则会报此错。处理方式还是调整参数,使用Lora微调时的常见参数,q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj。注意格式,如果格式不对,还是会报错。

3.1.3 问题三: RuntimeError: The size of tensor a (1060864) must match the size of tensor b (315392) at non-singleton dimension 0。

这种tensor的问题,很可能是模型冲突的问题,比如调到一半,然后重新提调,指到相同的路径。重新指定output路径即可。

3.1.4 问题四: 训练效率问题

在GPU充分的情况下,使用zero_2的训练效率,很明显比zero_3的训练效率更快!

【后续,持续更新。。。】

相关文章:

【个人开发】deepspeed+Llama-factory 本地数据多卡Lora微调【完整教程】

文章目录 1.背景2.微调方式2.1 关键环境版本信息2.2 步骤2.2.1 下载llama-factory2.2.2 准备数据集2.2.3 微调模式2.2.3.1 zero-1微调2.2.3.2 zero-2微调2.2.3.3 zero-3微调2.2.3.4 单卡Lora微调 2.2.4 实验2.2.4.1 实验1&#xff1a;多GPU微调-zero12.2.4.2 实验2&#xff1a;…...

浏览器报错:无法访问此网站 无法找到xxx.xxx.net的DNS地址。正在诊断该问题。尝试运行Windows网络诊断。DNS_PROBE_STARTED

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;希望我的文章能帮到您&#x1f7ea;如有兴趣可点关注了解更多内容 &#x1f4d8;博主信息 点击标题&#x1f446;有惊喜 &#x1f4c3;文章前言 &#x1f537;文章均为学习和工作中整理的笔记&#xff0c;分享记录…...

【设计模式】 代理模式(静态代理、动态代理{JDK动态代理、JDK动态代理与CGLIB动态代理的区别})

代理模式 代理模式是一种结构型设计模式&#xff0c;它提供了一种替代访问的方法&#xff0c;即通过代理对象来间接访问目标对象。代理模式可以在不改变原始类代码的情况下&#xff0c;增加额外的功能&#xff0c;如权限控制、日志记录等。 静态代理 静态代理是指创建的或特…...

网络安全-攻击流程-用户层

用户层攻击主要针对操作系统中的用户空间应用程序及用户权限&#xff0c;利用软件漏洞、配置错误或用户行为弱点进行攻击。以下是常见的用户层攻击类型及其流程&#xff0c;以及防御措施&#xff1a; 1. 缓冲区溢出攻击 攻击流程&#xff1a; 目标识别&#xff1a;确定存在漏…...

网络安全等级保护测评(等保测评):全面指南与准备要点

等保测评&#xff0c;全称为“网络安全等级保护测评”&#xff0c;是根据《网络安全法》及《网络安全等级保护条例》等法律法规&#xff0c;对信息系统进行安全等级划分&#xff0c;并依据不同等级的安全保护要求&#xff0c;采用科学方法和技术手段&#xff0c;全面评估信息系…...

具身导航赋能智能物流!OpenBench:智能物流最后一公里语义导航新基准

作者&#xff1a;Junhui Wang, Dongjie Huo, Zehui Xu, Yongliang Shi, Yimin Yan, Yuanxin Wang, Chao Gao, Yan Qiao, Guyue Zhou 单位&#xff1a;澳门科技大学系统工程与协作实验室、智能科学与系统联合实验室&#xff0c;清华大学人工智能产业研究院&#xff08;AIR&…...

详解 本机安装多个MySQL服务【为后续大数据量分库分表奠定基础,以mysql8.0为例,附有图文】

本机安装多个mysql 在电脑上新建mysql8文件夹&#xff0c;然后在mysql8文件下新建mysql3391文件夹。然后找到自己原本mysql的安装目录&#xff0c;我的是E:\software\mysql\one&#xff0c;如图所示&#xff1a; 将次目录下的所有文件全选复制粘贴在mysql3391文件夹下。 然后…...

2025年新趋势:如何利用AI技术优化你的在线帮助中心

在2025年的今天&#xff0c;人工智能&#xff08;AI&#xff09;技术正以惊人的速度改变着我们的世界。从自动驾驶汽车到智能家居&#xff0c;从医疗诊断到金融分析&#xff0c;AI的身影无处不在。而在客户服务领域&#xff0c;AI同样正在发挥着越来越重要的作用。特别是在线帮…...

同花顺Java开发面试题及参考答案 (上)

int 类型占用几个字节&#xff1f;float 类型的数字如何与 0 进行比较&#xff1f; 在 Java 中&#xff0c;int 类型是一种基本数据类型&#xff0c;它占用 4 个字节。一个字节有 8 位&#xff0c;所以 int 类型总共是 32 位。这 32 位可以用来表示不同的整数值&#xff0c;其取…...

CommonLang3-使用介绍

摘自&#xff1a;https://www.cnblogs.com/haicheng92/p/18721636 学习要带着目的&#xff0c;参照现实问题 本次目标&#xff1a; 了解 CommonsLang3 API 文档&#xff0c;找对路后以后开发直接查询 API 文档&#xff0c;摈弃盲目的百度掌握基础的字符串、日期、数值等工具…...

Java常用设计模式及其应用场景

1. 什么是设计模式&#xff1f; 设计模式是一个经过多次验证的、针对常见问题的可复用解决方案。设计模式并不是具体的代码实现&#xff0c;而是给出了如何解决问题的思路和结构。在实际开发过程中&#xff0c;设计模式有助于开发者快速找到合适的解决方案&#xff0c;从而减少…...

Ubuntu 下 nginx-1.24.0 源码分析 - ngx_pnalloc函数

ngx_pnalloc 声明在 src\core\ngx_palloc.h void *ngx_pnalloc(ngx_pool_t *pool, size_t size); 定义在 src\core\ngx_palloc.c void * ngx_pnalloc(ngx_pool_t *pool, size_t size) { #if !(NGX_DEBUG_PALLOC)if (size < pool->max) {return ngx_palloc_small(pool, …...

【ISO 14229-1:2023 UDS诊断(会话控制0x10服务)测试用例CAPL代码全解析①】

ISO 14229-1:2023 UDS诊断【会话控制0x10服务】_TestCase01 作者&#xff1a;车端域控测试工程师 更新日期&#xff1a;2025年02月14日 关键词&#xff1a;UDS诊断、0x10服务、诊断会话控制、ECU测试、ISO 14229-1:2023 TC10-001测试用例 用例ID测试场景验证要点参考条款预期…...

A与B组件自动对齐与组装,无映射直接补偿。

网上针对组装的从视觉到控制动作,要不就是收费,要不就是简单介绍。这么详细的比较难找~ 手下留情,不喜勿喷! Show time~ 分步解决方案: 标定阶段(Calibration) 9点张氏标定(每个位置A1、A2、B1、B2): 使用机械手在相机视野内沿Z字形路径移动,覆盖9个点(XY方…...

QT 读写锁

一、概述 1、读写锁是一种线程同步机制&#xff0c;用于解决多线程环境下的读写竞争问题。 2、读写锁允许多个线程同时获取读锁&#xff08;共享访问&#xff09;&#xff0c;但只允许一个线程获取写锁&#xff08;独占访问&#xff09;。 3、这种机制可以提高并发性能&…...

C++ 的时间库之二:Ratio

从现在开始&#xff0c;我们开始介绍 C 风格的时间处理&#xff0c;在这之前&#xff0c;首先要介绍std::ratio。因为 C 的 chrono库中的时间段&#xff08;duration&#xff09;定义离不开std::ratio&#xff0c;不了解std::ratio&#xff0c;就很难理解duration的定义。 1 st…...

使用小雅xiaoya/Emby正确的观看电影电视剧的姿势

最近有很多小伙伴来咨询关于小雅Emby全家桶的使用问题&#xff0c;最常见的就是在Emby上搜索出来资源之后&#xff0c;点击播放会提示【播放错误】&#xff0c;当前没有兼容的流。 这可把很多小伙伴给急坏了……于是找到小白咨询。 嗯……怎么说呢&#xff1f;小白并不喜欢看电…...

Java状态机

目录 1. 概念 2. 定义状态机 3. 生成一个状态机 4. 使用 1. 概念 在Java的应用开发里面&#xff0c;应该会有不少的人接触到一个业务场景下&#xff0c;一个数据的状态会发生多种变化&#xff0c;最经典的例子例如订单&#xff0c;当然还有像用户的状态变化&#xff08;冻结…...

【Pandas】pandas Series isin

Pandas2.2 Series Computations descriptive stats 方法描述Series.align(other[, join, axis, level, …])用于将两个 Series 对齐&#xff0c;使其具有相同的索引Series.case_when(caselist)用于根据条件列表对 Series 中的元素进行条件判断并返回相应的值Series.drop([lab…...

通过VSCode直接连接使用 GPT的编程助手

GPT的编程助手在VSC上可以直接使用 选择相应的版本都可以正常使用。每个月可以使用40条&#xff0c;超过限制要付费。 如下图对应的4o和claude3.5等模型都可以使用。VSC直接连接即可。 配置步骤如下&#xff1a; 安装VSCODE 直接&#xff0c;官网下载就行 https://code.vis…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...