实现一个简单的协同过滤推荐算法
题目描述:
协同过滤是推荐系统中的一种常用技术,其基本思想是利用用户之间的相似性或物品之间的相似性来进行推荐。本次面试题要求实现一个基于用户的协同过滤推荐算法。
具体要求:
定义两个类:User 和 Item,分别表示用户和物品。
User 类包含用户ID和用户对各个物品的评分(使用Map<Item, Integer>存储)。
Item 类包含物品ID。
实现一个方法 calculateSimilarity(User user1, User user2),计算两个用户之间的相似度。相似度计算可以使用余弦相似度。
实现一个方法 recommendItems(User targetUser, List<User> otherUsers, int topN),为目标用户推荐N个最可能的物品。推荐逻辑是:找出与目标用户最相似的K个用户,然后根据这些用户的评分来推荐物品。
示例代码:
import java.util.*;class User {private String userId;private Map<String, Integer> ratings;public User(String userId) {this.userId = userId;this.ratings = new HashMap<>();}public void addRating(String item, int rating) {ratings.put(item, rating);}public Map<String, Integer> getRatings() {return ratings;}public static double calculateSimilarity(User user1, User user2) {Map<String, Integer> ratings1 = user1.getRatings();Map<String, Integer> ratings2 = user2.getRatings();double similarity = 0.0;for (String item : ratings1.keySet()) {if (ratings2.containsKey(item)) {similarity += ratings1.get(item) * ratings2.get(item);}}return similarity / (Math.sqrt(ratings1.size() * ratings2.size());}public static List<String> recommendItems(User targetUser, List<User> otherUsers, int topN) {Map<User, Double> similarityScores = new HashMap<>();for (User user : otherUsers) {if (!user.equals(targetUser)) {double similarity = calculateSimilarity(targetUser, user);similarityScores.put(user, similarity);}}List<Map.Entry<User, Double>> sortedUsers = new ArrayList<>(similarityScores.entrySet());sortedUsers.sort((a, b) -> b.getValue().compareTo(a.getValue()));Map<String, Integer> targetRatings = targetUser.getRatings();List<String> recommendedItems = new ArrayList<>();for (int i = 0; i < Math.min(topN, sortedUsers.size()); i++) {User similarUser = sortedUsers.get(i).getKey();Map<String, Integer> similarRatings = similarUser.getRatings();for (String item : similarRatings.keySet()) {if (!targetRatings.containsKey(item)) {recommendedItems.add(item);}}return recommendedItems;}public static void main(String[] args) {// Example usageUser user1 = new User("1");User user2 = new User("2");User user3 = new User("3");user1.addRating("item1", 5);user1.addRating("item2", 3);user2.addRating("item1", 4);user2.addRating("item3", 2);user3.addRating("item2", 5);user3.addRating("item3", 4);List<String> recommendations = recommendItems(user1, Arrays.asList(user2, user3), 2);System.out.println("Recommended items for user1: " + recommendations);}
}
相关文章:
实现一个简单的协同过滤推荐算法
题目描述: 协同过滤是推荐系统中的一种常用技术,其基本思想是利用用户之间的相似性或物品之间的相似性来进行推荐。本次面试题要求实现一个基于用户的协同过滤推荐算法。 具体要求: 定义两个类:User 和 Item,分别表示用…...
eNSP防火墙综合实验
一、实验拓扑 二、ip和安全区域配置 1、防火墙ip和安全区域配置 新建两个安全区域 ip配置 Client1 Client2 电信DNS 百度web-1 联通DNS 百度web-2 R2 R1 三、DNS透明代理相关配置 1、导入运营商地址库 2、新建链路接口 3、配置真实DNS服务器 4、创建虚拟DNS服务器 5、配置D…...
操作系统知识(二)
1、线程切换进行了哪些动作 在操作系统中,线程切换(也称为上下文切换)是指操作系统将 CPU 的控制权从一个线程转移到另一个线程的过程。这个过程涉及多个步骤和动作,主要包括以下几个方面: 1. 保存当前线程的上下文 …...
图论:tarjan 算法求解强连通分量
题目描述 有一个 n n n 个点, m m m 条边的有向图,请求出这个图点数大于 1 1 1 的强连通分量个数。 输入格式 第一行为两个整数 n n n 和 m m m。 第二行至 m 1 m1 m1 行,每一行有两个整数 a a a 和 b b b,表示有一条…...
Spring中Bean的四种实例化方法
Bean的四种实例化方法 Bean是Spring核心的概念,另外一个核心的概念是AOP。官网上,Bean的解释是: In Spring, the objects that form the backbone of your application and that are managed by the Spring IoC container are called beans…...
专利申请要求
专利申请并不要求发明已经实际制造出来,但需要具备完整且可行的技术方案。以下是详细的解释和申请流程: 一、专利申请的核心要求 技术方案而非实物 专利保护的是创新性的技术方案或设计理念,而非实物产品本身。只要你能清晰描述技术原理、结构…...
解锁 JavaScript 异步编程:Promise 链式操作、async/await 与 Promise.all 深度剖析
1.引言 在 JavaScript 的世界里,异步编程是一个核心且关键的概念。随着 Web 应用的复杂度不断提升,处理多个异步操作的需求也日益增长。传统的回调函数方式容易陷入 “回调地狱”,让代码的可读性和可维护性大打折扣。而 Promise 的出现为异步编程带来了新的曙光,后续又衍生…...
Centos虚拟机扩展磁盘空间
Centos虚拟机扩展磁盘空间 扩展前后效果1 虚拟机vmware关机后,编辑2 扩展2.1 查看2.2 新建分区2.3 格式化新建分区ext42.3.1 格式化2.3.2 创建2.3.3 修改2.3.4 查看 2.4 扩容2.4.1 扩容2.4.1 查看 扩展前后效果 df -h1 虚拟机vmware关机后,编辑 2 扩展 …...
记录一次部署PC端网址全过程
当我查看我之前写的文章时、顿时惊奇发出感慨:啥时候写的?是我写的么?疑惑重重… 所以说,好记性不如烂笔头。 记录一次部署PC端网址全过程 部署PC端网址分是三步:第一步:申请域名并映射到外网IP ࿰…...
利用 OpenCV 进行棋盘检测与透视变换
利用 OpenCV 进行棋盘检测与透视变换 1. 引言 在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于 摄像机标定、文档扫描、增强现实(AR) 等场景。本篇文章将详细介绍如何使用 OpenCV 进行 棋盘检测,并…...
Java Spring boot 篇:常用注解
Configuration 作用 Configuration 注解的核心作用是把一个类标记为 Spring 应用上下文里的配置类。配置类就像一个 Java 版的 XML 配置文件,能够在其中定义 Bean 定义和 Bean 之间的依赖关系。当 Spring 容器启动时,会扫描这些配置类,解析其…...
#渗透测试#批量漏洞挖掘#Apache Log4j反序列化命令执行漏洞
免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 Apache Log4j反序列化命令执行漏洞 一、…...
【Linux】Linux 文件系统——关于inode 不足的相关案例
ℹ️大家好,我是练小杰,今天周二了,明天星期三,还有三天就是星期五了,坚持住啊各位!!!😆 本文是对之前Linux文件权限中的inode号进行实例讨论,看到博客有错误…...
k8s集群如何赋权普通用户仅管理指定命名空间资源
文章目录 1. 普通用户2. 创建私钥3. 创建 CertificateSigningRequest4. 批准 CertificateSigningRequest5. 创建 kubeconfig6. 创建角色和角色绑定7. 测试 1. 普通用户 创建用户demo useradd demo2. 创建私钥 下面的脚本展示了如何生成 PKI 私钥和 CSR。 设置 CSR 的 CN 和 …...
工控网络安全介绍 工控网络安全知识题目
31.PDR模型与访问控制的主要区别(A) A、PDR把对象看作一个整体 B、PDR作为系统保护的第一道防线 C、PDR采用定性评估与定量评估相结合 D、PDR的关键因素是人 32.信息安全中PDR模型的关键因素是(A) A、人 B、技术 C、模型 D、客体 33.计算机网络最早出现在哪个年代(B) A、20世…...
AIGC(生成式AI)试用 21 -- Python调用deepseek API
1. 安装openai pip3 install openai########################## Collecting openaiUsing cached openai-1.61.1-py3-none-any.whl.metadata (27 kB) Collecting anyio<5,>3.5.0 (from openai)Using cached anyio-4.8.0-py3-none-any.whl.metadata (4.6 kB) Collecting d…...
跨平台AES/DES加密解密算法【超全】
算法说明 要实现在 WinForm、Android、iOS、Vue3 中使用 相同的算法,确保各平台加密结果互通 一、统一加密参数 算法: AES-256-CBC 密钥: 32字节(示例中使用固定字符串生成) IV: 16字节 填充模式: PKCS7 字符编码: UTF-8 输出格式: Base64二、各平台实现代码...
Webpack 基础入门
一、Webpack 是什么 Webpack 是一款现代 JavaScript 应用程序的静态模块打包工具。在 Web 开发中,我们的项目会包含各种类型的文件,如 JavaScript、CSS、图片等。Webpack 可以将这些文件打包成一个或多个文件,以便在浏览器中高效加载。它就像…...
deepseek-v3在阿里云和腾讯云的使用中的差异
随着deepseek在各大云商上线,试用了下阿里云和腾讯云的deepseek服务,在回答经典数学问题9.9和9.11谁大时,发现还是有差异的。将相关的问题记录如下。 1、问题表现 笔者使用的openai的官方sdk go-openai。 因本文中测验主要使用阿里云和腾讯…...
Mathtype安装入门指南
Mathtype安装入门指南 1 mathtype安装及补丁2 mathtype在word中加载3 常见的mathtype快捷命令4 实列测试 1 mathtype安装及补丁 下载相应的Mathtype7.4软件安装包,百度网盘链接为: 百度网盘链接下载完成后,有三个软件,如下图所示…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
