实现一个简单的协同过滤推荐算法
题目描述:
协同过滤是推荐系统中的一种常用技术,其基本思想是利用用户之间的相似性或物品之间的相似性来进行推荐。本次面试题要求实现一个基于用户的协同过滤推荐算法。
具体要求:
定义两个类:User 和 Item,分别表示用户和物品。
User 类包含用户ID和用户对各个物品的评分(使用Map<Item, Integer>存储)。
Item 类包含物品ID。
实现一个方法 calculateSimilarity(User user1, User user2),计算两个用户之间的相似度。相似度计算可以使用余弦相似度。
实现一个方法 recommendItems(User targetUser, List<User> otherUsers, int topN),为目标用户推荐N个最可能的物品。推荐逻辑是:找出与目标用户最相似的K个用户,然后根据这些用户的评分来推荐物品。
示例代码:
import java.util.*;class User {private String userId;private Map<String, Integer> ratings;public User(String userId) {this.userId = userId;this.ratings = new HashMap<>();}public void addRating(String item, int rating) {ratings.put(item, rating);}public Map<String, Integer> getRatings() {return ratings;}public static double calculateSimilarity(User user1, User user2) {Map<String, Integer> ratings1 = user1.getRatings();Map<String, Integer> ratings2 = user2.getRatings();double similarity = 0.0;for (String item : ratings1.keySet()) {if (ratings2.containsKey(item)) {similarity += ratings1.get(item) * ratings2.get(item);}}return similarity / (Math.sqrt(ratings1.size() * ratings2.size());}public static List<String> recommendItems(User targetUser, List<User> otherUsers, int topN) {Map<User, Double> similarityScores = new HashMap<>();for (User user : otherUsers) {if (!user.equals(targetUser)) {double similarity = calculateSimilarity(targetUser, user);similarityScores.put(user, similarity);}}List<Map.Entry<User, Double>> sortedUsers = new ArrayList<>(similarityScores.entrySet());sortedUsers.sort((a, b) -> b.getValue().compareTo(a.getValue()));Map<String, Integer> targetRatings = targetUser.getRatings();List<String> recommendedItems = new ArrayList<>();for (int i = 0; i < Math.min(topN, sortedUsers.size()); i++) {User similarUser = sortedUsers.get(i).getKey();Map<String, Integer> similarRatings = similarUser.getRatings();for (String item : similarRatings.keySet()) {if (!targetRatings.containsKey(item)) {recommendedItems.add(item);}}return recommendedItems;}public static void main(String[] args) {// Example usageUser user1 = new User("1");User user2 = new User("2");User user3 = new User("3");user1.addRating("item1", 5);user1.addRating("item2", 3);user2.addRating("item1", 4);user2.addRating("item3", 2);user3.addRating("item2", 5);user3.addRating("item3", 4);List<String> recommendations = recommendItems(user1, Arrays.asList(user2, user3), 2);System.out.println("Recommended items for user1: " + recommendations);}
}
相关文章:
实现一个简单的协同过滤推荐算法
题目描述: 协同过滤是推荐系统中的一种常用技术,其基本思想是利用用户之间的相似性或物品之间的相似性来进行推荐。本次面试题要求实现一个基于用户的协同过滤推荐算法。 具体要求: 定义两个类:User 和 Item,分别表示用…...
eNSP防火墙综合实验
一、实验拓扑 二、ip和安全区域配置 1、防火墙ip和安全区域配置 新建两个安全区域 ip配置 Client1 Client2 电信DNS 百度web-1 联通DNS 百度web-2 R2 R1 三、DNS透明代理相关配置 1、导入运营商地址库 2、新建链路接口 3、配置真实DNS服务器 4、创建虚拟DNS服务器 5、配置D…...
操作系统知识(二)
1、线程切换进行了哪些动作 在操作系统中,线程切换(也称为上下文切换)是指操作系统将 CPU 的控制权从一个线程转移到另一个线程的过程。这个过程涉及多个步骤和动作,主要包括以下几个方面: 1. 保存当前线程的上下文 …...
图论:tarjan 算法求解强连通分量
题目描述 有一个 n n n 个点, m m m 条边的有向图,请求出这个图点数大于 1 1 1 的强连通分量个数。 输入格式 第一行为两个整数 n n n 和 m m m。 第二行至 m 1 m1 m1 行,每一行有两个整数 a a a 和 b b b,表示有一条…...
Spring中Bean的四种实例化方法
Bean的四种实例化方法 Bean是Spring核心的概念,另外一个核心的概念是AOP。官网上,Bean的解释是: In Spring, the objects that form the backbone of your application and that are managed by the Spring IoC container are called beans…...
专利申请要求
专利申请并不要求发明已经实际制造出来,但需要具备完整且可行的技术方案。以下是详细的解释和申请流程: 一、专利申请的核心要求 技术方案而非实物 专利保护的是创新性的技术方案或设计理念,而非实物产品本身。只要你能清晰描述技术原理、结构…...
解锁 JavaScript 异步编程:Promise 链式操作、async/await 与 Promise.all 深度剖析
1.引言 在 JavaScript 的世界里,异步编程是一个核心且关键的概念。随着 Web 应用的复杂度不断提升,处理多个异步操作的需求也日益增长。传统的回调函数方式容易陷入 “回调地狱”,让代码的可读性和可维护性大打折扣。而 Promise 的出现为异步编程带来了新的曙光,后续又衍生…...
Centos虚拟机扩展磁盘空间
Centos虚拟机扩展磁盘空间 扩展前后效果1 虚拟机vmware关机后,编辑2 扩展2.1 查看2.2 新建分区2.3 格式化新建分区ext42.3.1 格式化2.3.2 创建2.3.3 修改2.3.4 查看 2.4 扩容2.4.1 扩容2.4.1 查看 扩展前后效果 df -h1 虚拟机vmware关机后,编辑 2 扩展 …...
记录一次部署PC端网址全过程
当我查看我之前写的文章时、顿时惊奇发出感慨:啥时候写的?是我写的么?疑惑重重… 所以说,好记性不如烂笔头。 记录一次部署PC端网址全过程 部署PC端网址分是三步:第一步:申请域名并映射到外网IP ࿰…...
利用 OpenCV 进行棋盘检测与透视变换
利用 OpenCV 进行棋盘检测与透视变换 1. 引言 在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于 摄像机标定、文档扫描、增强现实(AR) 等场景。本篇文章将详细介绍如何使用 OpenCV 进行 棋盘检测,并…...
Java Spring boot 篇:常用注解
Configuration 作用 Configuration 注解的核心作用是把一个类标记为 Spring 应用上下文里的配置类。配置类就像一个 Java 版的 XML 配置文件,能够在其中定义 Bean 定义和 Bean 之间的依赖关系。当 Spring 容器启动时,会扫描这些配置类,解析其…...
#渗透测试#批量漏洞挖掘#Apache Log4j反序列化命令执行漏洞
免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 Apache Log4j反序列化命令执行漏洞 一、…...
【Linux】Linux 文件系统——关于inode 不足的相关案例
ℹ️大家好,我是练小杰,今天周二了,明天星期三,还有三天就是星期五了,坚持住啊各位!!!😆 本文是对之前Linux文件权限中的inode号进行实例讨论,看到博客有错误…...
k8s集群如何赋权普通用户仅管理指定命名空间资源
文章目录 1. 普通用户2. 创建私钥3. 创建 CertificateSigningRequest4. 批准 CertificateSigningRequest5. 创建 kubeconfig6. 创建角色和角色绑定7. 测试 1. 普通用户 创建用户demo useradd demo2. 创建私钥 下面的脚本展示了如何生成 PKI 私钥和 CSR。 设置 CSR 的 CN 和 …...
工控网络安全介绍 工控网络安全知识题目
31.PDR模型与访问控制的主要区别(A) A、PDR把对象看作一个整体 B、PDR作为系统保护的第一道防线 C、PDR采用定性评估与定量评估相结合 D、PDR的关键因素是人 32.信息安全中PDR模型的关键因素是(A) A、人 B、技术 C、模型 D、客体 33.计算机网络最早出现在哪个年代(B) A、20世…...
AIGC(生成式AI)试用 21 -- Python调用deepseek API
1. 安装openai pip3 install openai########################## Collecting openaiUsing cached openai-1.61.1-py3-none-any.whl.metadata (27 kB) Collecting anyio<5,>3.5.0 (from openai)Using cached anyio-4.8.0-py3-none-any.whl.metadata (4.6 kB) Collecting d…...
跨平台AES/DES加密解密算法【超全】
算法说明 要实现在 WinForm、Android、iOS、Vue3 中使用 相同的算法,确保各平台加密结果互通 一、统一加密参数 算法: AES-256-CBC 密钥: 32字节(示例中使用固定字符串生成) IV: 16字节 填充模式: PKCS7 字符编码: UTF-8 输出格式: Base64二、各平台实现代码...
Webpack 基础入门
一、Webpack 是什么 Webpack 是一款现代 JavaScript 应用程序的静态模块打包工具。在 Web 开发中,我们的项目会包含各种类型的文件,如 JavaScript、CSS、图片等。Webpack 可以将这些文件打包成一个或多个文件,以便在浏览器中高效加载。它就像…...
deepseek-v3在阿里云和腾讯云的使用中的差异
随着deepseek在各大云商上线,试用了下阿里云和腾讯云的deepseek服务,在回答经典数学问题9.9和9.11谁大时,发现还是有差异的。将相关的问题记录如下。 1、问题表现 笔者使用的openai的官方sdk go-openai。 因本文中测验主要使用阿里云和腾讯…...
Mathtype安装入门指南
Mathtype安装入门指南 1 mathtype安装及补丁2 mathtype在word中加载3 常见的mathtype快捷命令4 实列测试 1 mathtype安装及补丁 下载相应的Mathtype7.4软件安装包,百度网盘链接为: 百度网盘链接下载完成后,有三个软件,如下图所示…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程
鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...
