当前位置: 首页 > news >正文

【练习】【回溯:组合:一个集合 元素可重复】力扣 39. 组合总和

题目

  1. 组合总和

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数
target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7

输出:[[2,2,3],[7]]

解释:

2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。

7 也是一个候选, 7 = 7 。

仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], target = 8

输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1

输出: []

来源:力扣 39. 组合总和


思路(注意事项)

  • const vector<int>& candidates

& 是引用符号。当一个函数参数被声明为引用类型时,函数内部使用的实际上是传入实参的别名,而不是实参的副本。这意味着对引用参数的修改会直接影响到原始的实参。引用传递避免了对象的复制,在处理大型对象时可以显著提高性能,减少内存开销。

  • 在同一个集合中求组合,一定要有start(目的是为了避免重复组合

纯代码

class Solution {
private:vector<int> path;vector<vector<int>> ans;void backtracking (const vector<int>& candidates, int target, int sum, int start){if (sum > target) return;if (sum == target){ans.push_back(path);return;}for (int i = start; i < candidates.size() && target >= sum + candidates[i]; i ++){sum += candidates[i];path.push_back(candidates[i]);backtracking (candidates, target, sum, i);sum -= candidates[i];path.pop_back();}}
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {sort (candidates.begin(), candidates.end());backtracking (candidates, target, 0, 0);return ans;}
};

题解(加注释)

class Solution {
private:vector<int> path;         // 存储当前组合路径vector<vector<int>> ans;  // 存储所有符合条件的组合// 回溯函数// candidates: 候选数字集合(已排序)// target: 目标总和// sum: 当前路径元素和// start: 当前遍历起始索引(避免重复组合)void backtracking(vector<int> candidates, int target, int sum, int start) { // 注意这里 candidates 是值传递,会产生拷贝// 剪枝:当前和超过目标值,直接返回if (sum > target) return;// 终止条件:当前和等于目标值,记录结果if (sum == target) {ans.push_back(path);return;}// 遍历候选数字(从start开始,避免重复组合)for (int i = start; i < candidates.size() && target >= sum + candidates[i]; // 关键剪枝:提前终止无效分支i++) {sum += candidates[i];        // 选择当前数字path.push_back(candidates[i]);backtracking(candidates, target, sum, i); // 递归处理(注意传i而不是i+1,允许重复选择)sum -= candidates[i];        // 撤销选择path.pop_back();}}public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {// 关键优化:排序候选数组,方便后续剪枝sort(candidates.begin(), candidates.end());backtracking(candidates, target, 0, 0);return ans;}
};

相关文章:

【练习】【回溯:组合:一个集合 元素可重复】力扣 39. 组合总和

题目 组合总和 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#xff0c;并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个 数字可以 无限制重…...

Mac 清理缓存,提高内存空间

步骤 1.打开【访达】 2.菜单栏第五个功能【前往】&#xff0c;点击【个人】 3.【command shift J】显示所有文件&#xff0c;打开【资源库】 4.删除【Containers】和【Caches】文件 Containers 文件夹&#xff1a;用于存储每个应用程序的沙盒数据&#xff0c;确保应用程序…...

数据结构——二叉树经典习题讲解

各位看官早安午安晚安呀 如果您觉得这篇文章对您有帮助的话 欢迎您一键三连&#xff0c;小编尽全力做到更好 欢迎您分享给更多人哦 大家好&#xff0c;我们今天来学习java数据结构的二叉树 递归很重要的一些注意事项&#xff1a; 1&#xff1a;递归你能不能掌握在于&#xff1…...

神经网络八股(三)

1.什么是梯度消失和梯度爆炸 梯度消失是指梯度在反向传播的过程中逐渐变小&#xff0c;最终趋近于零&#xff0c;这会导致靠前层的神经网络层权重参数更新缓慢&#xff0c;甚至不更新&#xff0c;学习不到有用的特征。 梯度爆炸是指梯度在方向传播过程中逐渐变大&#xff0c;…...

堆、优先队列、堆排序

堆&#xff1a; 定义&#xff1a; 必须是一个完全二叉树&#xff08;完全二叉树&#xff1a;完全二叉树只允许最后一行不为满&#xff0c;且最后一行必须从左往右排序&#xff0c;最后一行元素之间不可以有间隔&#xff09; 堆序性&#xff1a; 大根堆&#xff1a;每个父节点…...

vue 学习-vite api.js

/** 整机管理 * */ // 整机分类 列表 export const wholeMachineServersType params > ajaxGet({url: wholeMachine/serverstype/,params}) // 整机分类 新增 export const wholeMachineServersTypeAdd params > ajaxPost({url: wholeMachine/serverstype/,params}) /…...

java练习(35)

ps:题目来自力扣 整数反转 给你一个 32 位的有符号整数 x &#xff0c;返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] &#xff0c;就返回 0。 假设环境不允许存储 64 位整数&#xff08;有符号或无符号&#xff09…...

PW_Balance

目录 1、 PW_Balance 1.1、 getDocumentsTypeID 1.2、 getShouldAmount 1.3、 setOptimalAmount 1.4、 setRemark PW_Balance package com.gx.pojo; public class PW_Balance { private Integer BalanceID; private Integer PaymentID; private Integer ReceptionID…...

【Linux-网络】HTTP的清风与HTTPS的密语

&#x1f3ac; 个人主页&#xff1a;谁在夜里看海. &#x1f4d6; 个人专栏&#xff1a;《C系列》《Linux系列》《算法系列》 ⛰️ 道阻且长&#xff0c;行则将至 目录 &#x1f4da; 引言 &#x1f4da; 一、HTTP &#x1f4d6; 1.概述 &#x1f4d6; 2.URL &#x1f5…...

【前端框架】vue2和vue3的区别详细介绍

Vue 3 作为 Vue 2 的迭代版本&#xff0c;在性能、语法、架构设计等多个维度均有显著的变革与优化。以下详细剖析二者的区别&#xff1a; 响应式系统 Vue 2 实现原理&#xff1a;基于 Object.defineProperty() 方法实现响应式。当一个 Vue 实例创建时&#xff0c;Vue 会遍历…...

CMake管理依赖实战:多仓库的无缝集成

随着软件复杂度的增加&#xff0c;单个项目可能需要依赖多个外部库或模块。这些依赖项可能是来自不同的代码仓库&#xff0c;如ATest和BTest。为了实现高效的依赖管理&#xff0c;CMake提供了多种方式来处理这种多仓库的情况。下面我们将详细介绍几种常见的方法&#xff0c;并通…...

Touchgfx 编写下载算法文件(.stldr)

一&#xff09;下载算法文件主要参考官方的STM32 ST-LINK Utility模板&#xff1a;&#xff08;文件所在位置如下&#xff1a;&#xff09; C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK Utility\ST-LINK Utility\ExternalLoader\M25P64_STM3210E-EVAL\Project\MD…...

回不去的乌托邦

回不去的乌托邦 坐在电脑面前愣神间已至深夜&#xff0c;依然睡意不起。 相比于带着疲惫入睡&#xff0c;伏案发呆更令人惬意。想起最近在自媒体上看到的一句话“最顶级的享受变成了回不去的乌托邦”。 “这是兄弟们最后一次逛校园了&#xff0c;我拍个照”。我的记忆力总是用在…...

如何在 SpringBoot 项目使用 Redis 的 Pipeline 功能

本文是博主在批量存储聊天中用户状态和登陆信息到 Redis 缓存中时&#xff0c;使用到了 Pipeline 功能&#xff0c;并对此做出了整理。 一、Redis Pipeline 是什么 Redis 的 Pipeline 功能可以显著提升 Redis 操作的性能&#xff0c;性能提升的原因在于可以批量执行命令。当我…...

Linux----线程

一、基础概念对比 特性进程 (Process)线程 (Thread)资源分配资源分配的基本单位&#xff08;独立地址空间&#xff09;共享进程资源调度单位操作系统调度单位CPU调度的最小单位创建开销高&#xff08;需复制父进程资源&#xff09;低&#xff08;共享进程资源&#xff09;通信…...

实现rolabelimg对于dota格式文件的直接加载和保存

在本篇博客中&#xff0c;我们将讲解如何修改roLabelImg.py文件&#xff0c;使其能够直接加载和保存Dota格式的标注文件&#xff08;txt&#xff09;以替换掉复杂的xml文件。通过对源代码的修改&#xff0c;我们将实现支持加载并保存Dota格式标注数据&#xff0c;以便与roLabel…...

bboss v7.3.5来袭!新增异地灾备机制和Kerberos认证机制,助力企业数据安全

ETL & 流批一体化框架 bboss v7.3.5 发布&#xff0c;多源输出插件增加为特定输出插件设置记录过滤功能&#xff1b;Elasticsearch 客户端新增异地双中心灾备机制&#xff0c;提升框架高可用性&#xff1b;Elasticsearch client 和 http 微服务框架增加对 Kerberos 认证支持…...

华为昇腾服务器固件Firmware、驱动Drive、CANN各自的作用与联系?

文章目录 **1. 固件&#xff08;Firmware&#xff09;****2. 驱动&#xff08;Driver&#xff09;****3. CANN&#xff08;Compute Architecture for Neural Networks&#xff09;****三者关系****典型问题定位** 华为昇腾服务器的固件、驱动和CANN是支撑其AI计算能力的核心组件…...

MySQL 视图入门

一、什么是 MySQL 视图 1.1 视图的基本概念 在 MySQL 中&#xff0c;视图是一种虚拟表&#xff0c;它本身并不存储实际的数据&#xff0c;而是基于一个或多个真实表&#xff08;基表&#xff09;的查询结果集。可以把视图想象成是一个预定义好的查询语句的快捷方式。当你查询…...

算法很美笔记(Java)——动态规划

解重叠子问题&#xff08;当前解用到了以前求过的解&#xff09; 形式&#xff1a;记忆型递归或递推&#xff08;dp&#xff09; 动态规划本质是递推&#xff0c;核心是找到状态转移的方式&#xff0c;也就是填excel表时的逻辑&#xff08;填的方式&#xff09;&#xff0c;而…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...