windows使用命令解压jar包,替换里面的文件。并重新打包成jar包,解决Failed to get nested archive for entry
有一个jar包,需要替换里面的文件,使用解压工具打开项目,然后找到对应的子包,再次打开,然后进行手工替换重新压缩成jar包后,发现启动服务报错Failed to get nested archive for entry。
使用下面的命令可实现替换并重新打包成jar包的功能
1、解压

点击红框输入cmd回车进入窗口,输入命令:
jar -xvf main.jar
解压后出现三个文件夹

2、替换文件并重新添加到初始jar包
替换BOOT-INF文件夹里面的jar包或class文件,替换之后执行打包命令进行再次打包,命令如下
jar -uvf0 main.jar .\BOOT-INF\classes\org\springblade\modules\api\controller\DeviceController.class
-u: 表示更新现有 JAR 文件。这会将指定的新文件添加到 JAR 文件中,如果文件已存在,则会覆盖原有的文件。
-v: 表示详细模式,即在标准输出中显示有关文件添加的详细信息。
-f: 指定要更新的 JAR 文件名
0 表示压缩级别为 0,意味着不压缩。这是一个数字零,而不是字母 “o”。这意味着文件会被原样放入 JAR 文件中,不会进行任何压缩。
看到如下提示,则证明编译成功

可以把三个文件夹删除了,如果不放心可再次解压后查看。
使用命令看看jar是否可以正常启动
java -jar main.jar --server.port=8081
总结:
1、解压:jar -xvf xx.jar
2、替换文件
3.、把替换的文件追加到jar包:
jar -uvf0 main.jar .\BOOT-INF\classes\org\springblade\modules\api\controller\DeviceController.class
4、测试启动:jar main.jar --server.port=8081
相关文章:
windows使用命令解压jar包,替换里面的文件。并重新打包成jar包,解决Failed to get nested archive for entry
有一个jar包,需要替换里面的文件,使用解压工具打开项目,然后找到对应的子包,再次打开,然后进行手工替换重新压缩成jar包后,发现启动服务报错Failed to get nested archive for entry。 使用下面的命令可实…...
2025电商与跨境贸易实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)
🚀 2025电商与跨境贸易实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)🚀 📚 目录 DeepSeek在电商与跨境贸易中的核心价值选品与市场分析:AI驱动的精准决策Listing优化与多语言营销:提升转化率的秘密物流与供应链管理:AI赋能的效率革命客户服务与私域运营:…...
驱动开发系列39 - Linux Graphics 3D 绘制流程(二)- 设置渲染管线
一:概述 Intel 的 Iris 驱动是 Mesa 中的 Gallium 驱动,主要用于 Intel Gen8+ GPU(Broadwell 及更新架构)。它负责与 i915 内核 DRM 驱动交互,并通过 Vulkan(ANV)、OpenGL(Iris Gallium)、或 OpenCL(Clover)来提供 3D 加速。在 Iris 驱动中,GPU Pipeline 设置 涉及…...
自动驾驶中planning为什么要把横纵向分开优化?
在自动驾驶系统中,将 横向(Lateral)规划 和 纵向(Longitudinal)规划 分开优化是一种常见的设计范式,其核心原理在于 解耦车辆运动控制的多维复杂性,同时兼顾 计算效率 和 安全性约束。以下从原理…...
Linux 命令大全完整版(06)
2. 系统设置命令 pwunconv 功能说明:关闭用户的投影密码。语法:pwunconv补充说明:执行 pwunconv 指令可以关闭用户投影密码,它会把密码从 shadow 文件内,重回存到 passwd 文件里。 rdate(receive date) 功能说明&a…...
第9章:LangChain结构化输出-示例2(数字提取服务)
如何使用LangChain4j框架创建和使用多种AI服务。它通过定义接口和注解,将自然语言处理任务(如情感分析、数字提取、日期提取、POJO提取等)封装为服务,并通过LangChain4j的AiServices动态生成这些服务的实现。 本章主要讲述基于Lan…...
每天五分钟深度学习pytorch:使用Inception模块搭建GoogLeNet模型
本文重点 前面我们学习了Incetption模块,它的作用类似于vgg块对于VGG网络模型一样,本文我们使用Inception搭建GoogLeNet网络,如果使用卷积层开始从头开始搭建GoogleNet,那么这样看起来会很不清晰,我们使用已经封装好的Inception来搭建GoogLeNet网络 关键点 关键点在于I…...
Ubuntu - Redis 安装、远程访问
参考教程: https://blog.csdn.net/houor/article/details/126672577 https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/install-redis-on-linux/ 查看是否安装 redis-cli --versionUbuntu 上安装 更新: sudo apt update …...
SpringBoot+Vue+微信小程序的猫咖小程序平台(程序+论文+讲解+安装+调试+售后)
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复,希望帮助更多的人。 系统介绍 在当下这个高速发展的时代,网络科技正以令人惊叹的速度不断迭代更新。从 5G …...
二分查找算法的全面解析C++
一、核心原理与特性 二分查找是一种**对数时间复杂度(O(log n))**的高效搜索算法46,需满足两个前提条件: 数据存储在连续内存空间(如数组)数据按升序/降序有序排列35 算法通过折半比较缩小搜索范围: 初始化左右边界…...
深度学习(5)-卷积神经网络
我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对 MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为 97.8%。虽然这个卷积神经网络很简单…...
第9章:LangChain结构化输出-示例3(日期和时间提取服务)
如何使用LangChain4j框架创建和使用多种AI服务。它通过定义接口和注解,将自然语言处理任务(如情感分析、数字提取、日期提取、POJO提取等)封装为服务,并通过LangChain4j的AiServices动态生成这些服务的实现。 本章主要讲述基于LangChain调用大模型如何进行结构化输出的真实…...
解决Open WebU无法显示基于OpenAI API接口的推理内容的问题
解决方案 把reasoning content的东西移到content中来 并在reasoning时,手动加上标签。具体做法是截获第三方api返回的stream,并修改其中的内容,再移交给open webUI处理。 在backend\open_webui\routers\openai.py中 找到 generate_chat_com…...
AI颠覆蛋白质工程:ProMEP零样本预测突变效应
概述 在生命科学的“造物革命”中,蛋白质工程一直面临着“试错成本”与“设计效率”的双重挑战——传统方法依赖繁复的多序列比对(MSA)或耗时的实验室筛选,如同在浩瀚的蛋白质宇宙中盲选星辰。而今日,一项发表于《Cel…...
QT闲记-状态栏,模态对话框,非模态对话框
1、创建状态栏 跟菜单栏一样,如果是继承于QMainWindow类,那么可以获取窗口的状态栏,否则就要创建一个状态栏。通过statusBar()获取窗口的状态栏。 2、添加组件 通常添加Label 来显示相关信息,当然也可以添加其他的组件。通过addWidget()添加组件 3、设置状态栏样式 …...
QQ登录测试用例报告
QQ登录测试用例思维导图 一、安全性测试用例 1. 加密传输与存储验证 测试场景:输入账号密码并提交登录请求。预期结果:账号密码通过加密传输(如HTTPS)与存储(如哈希加盐),无明文暴露。 2. 二…...
ipad连接电脑断断续续,不断弹窗的解决办法
因为ipad air 屏幕摔坏,换了一个内外屏,想用爱思检验一下屏幕真伪, 连接电脑时,断断续续,连上几秒钟然后就断开,然后又连上 然后又断开,不断地弹出信任的弹窗。 刚开始以为是数据线问题&#x…...
《FFTformer:基于频域的高效Transformer用于高质量图像去模糊》
paper:2211.12250 GitHub:kkkls/FFTformer: [CVPR 2023] Effcient Frequence Domain-based Transformer for High-Quality Image Deblurring CVPR 2023 目录 摘要 1、介绍 2、相关工作 2.1 基于深度CNN的图像去模糊方法 2.2 Transformer及其在图…...
std::call_once
std::call_once 是 C11 标准库中提供的一个线程安全的一次性调用机制,位于 <mutex> 头文件中。它用于确保在多线程环境中,某个函数(或可调用对象)仅被调用一次,无论有多少线程尝试调用它。这种机制常用于实现线程…...
网络安全研究
1.1 网络安全面临的威胁 网络安全面临的威胁呈现出多样化和复杂化的趋势,给个人、企业和国家的安全带来了严峻挑战。以下是当前网络安全面临的主要威胁: 1.1.1 数据泄露风险 数据泄露是当前网络安全的重大威胁之一。根据国家互联网应急中心发布的《20…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
