当前位置: 首页 > news >正文

深度学习(5)-卷积神经网络

我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对 MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为 97.8%。虽然这个卷积神经网络很简单,但其精度会超过第2章的密集连接模型。

代码 8-1给出了一个简单的卷积神经网络。它是 conv2D层和 MaxPooling2D 层的堆叠,你很快就会知道这些层的作用。我们将使用第7章介绍过的函数式 API来构建模型。

代码8-1 实例化一个小型卷积神经网络

from tensorflow import kerasfrom tensorflow.keras import layersinputs = keras.Input(shape=(28, 28, 1))x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)x = layers.MaxPooling2D(pool_size=2)(x)x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)x = layers.MaxPooling2D(pool_size=2)(x)x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)x = layers.Flatten()(x)outputs = layers.Dense(10, activation="softmax")(x)model = keras.Model(inputs=inputs, outputs=outputs)

卷积神经网络接收的输入张量的形状为(image height,image width,image channels)(不包括批量维度)。本例中,我们设置卷积神经网络处理大小为(28,28,1)的输入,这正是 MNIST 图像的格式。

我们来看一下这个卷积神经网络的架构,如代码 8-2所示。

代码 8-2 显示模型的概述信息

model.summary()

在这里插入图片描述

可以看到,每个 conv2D层和 MaxPooling2D层的输出都是一个形状为(height,width,channels)的3阶张量。(张量的阶数相同,形状不同)宽度和高度这两个维度的尺寸通常会随着模型加深而减小。通道数对应传入Conv2D层的第一个参数(32、64或 128)。在最后一个 conv2D层之后,我们得到了形状为(3,3,128)的输出,即通道数为 128的3x3特征图。下一步是将这个输出传入密集连接分类器中,即 Dense 层的堆叠,你已经很熟悉了。这些分类器可以处理1阶的向量,而当前输出是3阶张量。为了让二者匹配,我们先用 Flatten 层将三维输出展平为一维,然后再添加 Dense 层。最后,我们进行十类别分类,所以最后一层使用带有 10个输出的 softmax 激活函数。下面我们在 MNIST数字上训练这个卷积神经网络。我们将重复使用的MNIST 示例中的很多代码。

由于我们要做的是带有 softmax 输出的十类别分类,因此要使用分类交叉熵损失,而且由于标签是整数,因此要使用稀疏分类交叉熵损失sparse categorical crossentropy,如代码 8-3 所示。注意此处代码执行需要网络才能执行。

from tensorflow.keras.datasets import mnist(train_images, train_labels), (test_images, test_labels) = mnist.load_data()train_images = train_images.reshape((60000, 28, 28, 1))train_images = train_images.astype("float32") / 255test_images = test_images.reshape((10000, 28, 28, 1))test_images = test_images.astype("float32") / 255model.compile(optimizer="rmsprop",loss="sparse_categorical_crossentropy",metrics=["accuracy"])model.fit(train_images, train_labels, epochs=5, batch_size=64)

我们在测试数据上评估模型,如代码 8-4所示。

代码 8-4 评估卷积神经网络

密集连接模型的测试精度约为 97.8%,而这个简单的卷积神经网络的测试精度达到99.1%,错误率降低了约 60%(相对比例)。这相当不错!

但是,与密集连接模型相比,这个简单卷积神经网络的效果为什么这么好?要回答这个问题,我们来深入了解 Conv2D 层和 MaxPooling2D层的作用。

总结:在一定条件下,卷积神经网络在图像识别上精度优于密集链接模型。每个 conv2D层和 MaxPooling2D层的输出都是一个形状为(height,width,channels)的3阶张量。宽度和高度这两个维度的尺寸通常会随着模型加深而减小。而通道数会模型加深而增加。我的理解就是通过悬系,模型对于特征的理解越来越丰富。

相关文章:

深度学习(5)-卷积神经网络

我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对 MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为 97.8%。虽然这个卷积神经网络很简单…...

第9章:LangChain结构化输出-示例3(日期和时间提取服务)

如何使用LangChain4j框架创建和使用多种AI服务。它通过定义接口和注解,将自然语言处理任务(如情感分析、数字提取、日期提取、POJO提取等)封装为服务,并通过LangChain4j的AiServices动态生成这些服务的实现。 本章主要讲述基于LangChain调用大模型如何进行结构化输出的真实…...

解决Open WebU无法显示基于OpenAI API接口的推理内容的问题

解决方案 把reasoning content的东西移到content中来 并在reasoning时,手动加上标签。具体做法是截获第三方api返回的stream,并修改其中的内容,再移交给open webUI处理。 在backend\open_webui\routers\openai.py中 找到 generate_chat_com…...

AI颠覆蛋白质工程:ProMEP零样本预测突变效应

概述 在生命科学的“造物革命”中,蛋白质工程一直面临着“试错成本”与“设计效率”的双重挑战——传统方法依赖繁复的多序列比对(MSA)或耗时的实验室筛选,如同在浩瀚的蛋白质宇宙中盲选星辰。而今日,一项发表于《Cel…...

QT闲记-状态栏,模态对话框,非模态对话框

1、创建状态栏 跟菜单栏一样,如果是继承于QMainWindow类,那么可以获取窗口的状态栏,否则就要创建一个状态栏。通过statusBar()获取窗口的状态栏。 2、添加组件 通常添加Label 来显示相关信息,当然也可以添加其他的组件。通过addWidget()添加组件 3、设置状态栏样式 …...

QQ登录测试用例报告

QQ登录测试用例思维导图 一、安全性测试用例 1. 加密传输与存储验证 测试场景:输入账号密码并提交登录请求。预期结果:账号密码通过加密传输(如HTTPS)与存储(如哈希加盐),无明文暴露。 2. 二…...

ipad连接电脑断断续续,不断弹窗的解决办法

因为ipad air 屏幕摔坏,换了一个内外屏,想用爱思检验一下屏幕真伪, 连接电脑时,断断续续,连上几秒钟然后就断开,然后又连上 然后又断开,不断地弹出信任的弹窗。 刚开始以为是数据线问题&#x…...

《FFTformer:基于频域的高效Transformer用于高质量图像去模糊》

paper:2211.12250 GitHub:kkkls/FFTformer: [CVPR 2023] Effcient Frequence Domain-based Transformer for High-Quality Image Deblurring CVPR 2023 目录 摘要 1、介绍 2、相关工作 2.1 基于深度CNN的图像去模糊方法 2.2 Transformer及其在图…...

std::call_once

std::call_once 是 C11 标准库中提供的一个线程安全的一次性调用机制&#xff0c;位于 <mutex> 头文件中。它用于确保在多线程环境中&#xff0c;某个函数&#xff08;或可调用对象&#xff09;仅被调用一次&#xff0c;无论有多少线程尝试调用它。这种机制常用于实现线程…...

网络安全研究

1.1 网络安全面临的威胁 网络安全面临的威胁呈现出多样化和复杂化的趋势&#xff0c;给个人、企业和国家的安全带来了严峻挑战。以下是当前网络安全面临的主要威胁&#xff1a; 1.1.1 数据泄露风险 数据泄露是当前网络安全的重大威胁之一。根据国家互联网应急中心发布的《20…...

【软考网工】华为交换机命令

目录 1、华为交换机命令行的三种视图2、修改交换机名称3、关闭和开启信息中心4、vlan附录&#xff1a; 交换机型号&#xff1a;S5700 1、华为交换机命令行的三种视图 <Huaweu> #用户视图。特征&#xff1a;尖括号、用户名。 [Huawei] #系统视图。特…...

【行业解决方案篇十八】【DeepSeek航空航天:故障诊断专家系统 】

引言:为什么说这是“航天故障终结者”? 2025年春节刚过,航天宏图突然官宣"DeepSeek已在天权智能体上线",这个搭载在卫星和空间站上的神秘系统,号称能提前48小时预判99.97%的航天器故障。这不禁让人想起年初NASA禁用DeepSeek引发的轩然大波,更让人好奇:这套系…...

输入菜单关键字,遍历匹配到 menuIds,展开 匹配节点 的所有父节点以及 匹配节点 本身,高亮 匹配节点

菜单检索&#xff0c;名称、地址、权限标志 等 关键字匹配、展开、高亮(全程借助 DeepSeek ) 便捷简洁的企业官网 的后台菜单管理&#xff0c;图示&#xff1a; 改造点&#xff1a; &#xff08;1&#xff09;修改 bootstrapTreeTable 的节点class命名方式为&#xff1a;treeg…...

【Blender】二、建模篇--07,置换修改器

0 00:00:03,620 --> 00:00:08,620 大家好 这张课呢 我们来讲建模篇的最后一个重点修改器 置换修改器 1 00:00:08,980 --> 00:00:17,580 把它放在最后 不是因为它最难 而是因为它很常用 尤其大家以后做材质的时候 我们可以用一张贴图把一个平面做出来凹凸的感觉 2 00:00…...

玩转 Java 与 Python 交互,JEP 库来助力

文章目录 玩转 Java 与 Python 交互&#xff0c;JEP 库来助力一、背景介绍二、JEP 库是什么&#xff1f;三、如何安装 JEP 库&#xff1f;四、JEP 库的简单使用方法五、JEP 库的实际应用场景场景 1&#xff1a;数据处理场景 2&#xff1a;机器学习场景 3&#xff1a;科学计算场…...

鸿蒙学习-

鸿蒙数据传值 //* 传值 //* State /**State创建一个响应式的数据&#xff0c;但不是所有的更改都会引起刷新&#xff0c;只有被框架观察到的修改才会被刷新UI* 1. 基本数据类型如 number string boolean等值的变化修改* 2. Object类型&#xff0c;只会观察到第一层的数据变化或…...

list结构刨析与模拟实现

目录 1.引言 2.C模拟实现 2.1模拟实现结点 2.2模拟实现list前序 1&#xff09;构造函数 2&#xff09;push_back函数 2.3模拟实现迭代器 1&#xff09;iterator 构造函数和析构函数&#xff1a; *操作符重载函数&#xff1a; 前置/后置/--&#xff1a; /!操作符重载…...

机器人部分专业课

华东理工 人工智能与机器人导论 Introduction of Artificial Intelligence and Robots 必修 考查 0.5 8 8 0 1 16477012 程序设计基础 The Fundamentals of Programming 必修 考试 3 64 32 32 1 47450012 算法与数据结构 Algorithm and Data Structure 必修 考试 3 56 40 …...

流行粗野主义几何风现代曲线标题logo设计psai无衬线英文字体安装包 Mortend – Extended Family

介绍我们名为 Mortend 的新探索&#xff0c;这是一个强大的扩展字体系列。Mortend 的设计具有几何形状、大胆、强烈的曲线和现代感。灵感来自当今流行的粗野主义海报和极简主义设计&#xff0c;让您有更多机会表达您的创造力。这个字体系列带来了强烈的感觉而优雅的外观&#x…...

前端常见面试题-2025

vue4.0 Vue.js 4.0 是在 2021 年 9 月发布。Vue.js 4.0 是 Vue.js 的一个重要版本&#xff0c;引入了许多新特性和改进&#xff0c;旨在提升开发者的体验和性能。以下是一些关键的更新和新特性&#xff1a; Composition API 重构&#xff1a;Vue 3 引入了 Composition API 作为…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...