当前位置: 首页 > news >正文

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明+代码讲解

文章目录

  • 【Python--NetworkX】函数说明+代码讲解
    • 1. 介绍
      • 1.1 前言
      • 1.2 图的类型(Graph Types)
      • 1.3 常用方法
    • 2. 代码示例

1. 介绍

1.1 前言

NetworkX是复杂网络研究领域中的常用Python包。

1.2 图的类型(Graph Types)

允许以可哈希的object作为节点,任何Python object作为边属性。

如何选择使用哪种图:
1
这里解释一下什么是平行边:连接一对顶点的两条边叫做平行边,即,无向图中,两个顶点间有多条边,他们叫做平行边,打个比方,北京和上海直接可以 是公路、铁路、飞机,那么他们互为平行边。

1.3 常用方法

  • 创建一个空的图
    1)无向图:G = nx.Graph()
    2)有向图:DG = nx.DiGraph()
  • 将有向图转换为无向图:G = nx.Graph(DG)
  • 图是否有向:G.is_directed() 返回布尔值
  • 添加节点
    1)直接添加一个节点(任何object都可以作为节点,包括另一个图)G.add_node(1)、G.add_node(DG)
    2)从任何容器加点:a list, dict, set or even the lines from a file or the nodes from another graph…;G.add_nodes_from() 或 nx.path_graph()
  • 添加边
    1)添加一条边 G.add_edge(u, v)
    2)添加一个边的列表 G.add_edges_from([(1, 2), (1, 3)])
    3)添加一个边的collection G.add_edges_from(H.edges)
    4)如果添加的边的点不存在于图中,会自动添上相应节点而不报错
  • 属性attribute
    1)图的节点/边/图都可以在关联的attribute字典中以键值对key/value形式存储attribute(key一定要是可哈希的)
    2)默认情况下属性字典是空的
    3)可以通过add_edge() add_node() 方法或直接操作分别名为graph edges nodes的属性字典来进行操作

2. 代码示例

import networkx as nx
import numpy as np #定义图的节点和边 
nodes=['0','1','2','3','4','5','a','b','c'] 
edges=[('0','0',1),('0','1',1),('0','5',1),('0','5',2),('1','2',3),('1','4',5),('2','1',7),('2','4',6),('a','b',0.5),('b','c',0.5),('c','a',0.5)] plt.subplots(1,2,figsize=(10,3)) #定义一个无向图和有向图 
G1 = nx.Graph() 
G1.add_nodes_from(nodes) 
G1.add_weighted_edges_from(edges) G2 = nx.DiGraph() 
G2.add_nodes_from(nodes) 
G2.add_weighted_edges_from(edges) pos1=nx.circular_layout(G1) 
pos2=nx.circular_layout(G2) #画出无向图和有向图 
plt.subplot(121) 
nx.draw(G1,pos1, with_labels=True, font_weight='bold') 
plt.title('无向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.subplot(122) 
nx.draw(G2,pos2, with_labels=True, font_weight='bold') 
plt.title('有向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.show() #控制numpy输出小数位数 
np.set_printoptions(precision=3)  #邻接矩阵 
A = nx.adjacency_matrix(G1) 
print('邻接矩阵:\n',A.todense()) 
邻接矩阵: [[0.  0.  0.  0.  5.  0.  0.  0.  6. ] [0.  0.  0.  2.  0.  0.  0.  0.  0. ] [0.  0.  0.  0.  0.  0.5 0.5 0.  0. ] [0.  2.  0.  1.  1.  0.  0.  0.  0. ] [5.  0.  0.  1.  0.  0.  0.  0.  7. ] [0.  0.  0.5 0.  0.  0.  0.5 0.  0. ] [0.  0.  0.5 0.  0.  0.5 0.  0.  0. ] [0.  0.  0.  0.  0.  0.  0.  0.  0. ] [6.  0.  0.  0.  7.  0.  0.  0.  0. ]] #关联矩阵 
I = nx.incidence_matrix(G1) 
print('\n关联矩阵:\n',I.todense()) 
关联矩阵: [[1. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 1. 0. 0. 0.] [0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 0. 0. 1. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 1. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0. 0. 1. 0.]] #拉普拉斯矩阵 
L=nx.laplacian_matrix(G1) 
print('\n拉普拉斯矩阵:\n',L.todense()) 
拉普拉斯矩阵: [[11.   0.   0.   0.  -5.   0.   0.   0.  -6. ] [ 0.   2.   0.  -2.   0.   0.   0.   0.   0. ] [ 0.   0.   1.   0.   0.  -0.5 -0.5  0.   0. ] [ 0.  -2.   0.   3.  -1.   0.   0.   0.   0. ] [-5.   0.   0.  -1.  13.   0.   0.   0.  -7. ] [ 0.   0.  -0.5  0.   0.   1.  -0.5  0.   0. ] [ 0.   0.  -0.5  0.   0.  -0.5  1.   0.   0. ] [ 0.   0.   0.   0.   0.   0.   0.   0.   0. ] [-6.   0.   0.   0.  -7.   0.   0.   0.  13. ]] #标准化的拉普拉斯矩阵 
NL=nx.normalized_laplacian_matrix(G1) 
print('标准化的拉普拉斯矩阵:\n',NL.todense()) 
标准化的拉普拉斯矩阵: [[ 1.     0.     0.     0.    -0.418  0.     0.     0.    -0.502] [ 0.     1.     0.    -0.707  0.     0.     0.     0.     0.   ] [ 0.     0.     1.     0.     0.    -0.5   -0.5    0.     0.   ] [ 0.    -0.707  0.     0.75  -0.139  0.     0.     0.     0.   ] [-0.418  0.     0.    -0.139  1.     0.     0.     0.    -0.538] [ 0.     0.    -0.5    0.     0.     1.    -0.5    0.     0.   ] [ 0.     0.    -0.5    0.     0.    -0.5    1.     0.     0.   ] [ 0.     0.     0.     0.     0.     0.     0.     0.     0.   ] [-0.502  0.     0.     0.    -0.538  0.     0.     0.     1.   ]] #有向图拉普拉斯矩阵 
DL=nx.directed_laplacian_matrix(G2) 
print('\n有向拉普拉斯矩阵:\n',DL) 
有向拉普拉斯矩阵: [[ 0.889 -0.117 -0.029 -0.087 -0.319 -0.029 -0.029 -0.129 -0.242] [-0.117  0.889 -0.026 -0.278 -0.051 -0.026 -0.026 -0.114 -0.056] [-0.029 -0.026  0.994 -0.012 -0.009 -0.481 -0.481 -0.025 -0.01 ] [-0.087 -0.278 -0.012  0.757 -0.097 -0.012 -0.012 -0.052 -0.006] [-0.319 -0.051 -0.009 -0.097  0.994 -0.009 -0.009 -0.041 -0.434] [-0.029 -0.026 -0.481 -0.012 -0.009  0.994 -0.481 -0.025 -0.01 ] [-0.029 -0.026 -0.481 -0.012 -0.009 -0.481  0.994 -0.025 -0.01 ] [-0.129 -0.114 -0.025 -0.052 -0.041 -0.025 -0.025  0.889 -0.045] [-0.242 -0.056 -0.01  -0.006 -0.434 -0.01  -0.01  -0.045  0.994]] #拉普拉斯算子的特征值 
LS=nx.laplacian_spectrum(G1) 
print('\n拉普拉斯算子的特征值:\n',LS) 
拉普拉斯算子的特征值: [-1.436e-15  0.000e+00  4.610e-16  7.000e-01  1.500e+00  1.500e+00 4.576e+00  1.660e+01  2.013e+01] #邻接矩阵的特征值 
AS=nx.adjacency_spectrum(G1) 
print('邻接矩阵的特征值:\n',AS) 
邻接矩阵的特征值: [12.068+0.000e+00j  2.588+0.000e+00j -7.219+0.000e+00j -4.925+0.000e+00j -1.513+0.000e+00j  1.   +0.000e+00j -0.5  +2.393e-17j -0.5  -2.393e-17j0.  +0.000e+00j]#无向图的代数连通性 
AC=nx.algebraic_connectivity(G1) 
print('无向图的代数连通性:\n',AC) 
无向图的代数连通性: 0.0 #图的光谱排序 
SO=nx.spectral_ordering(G1) 
print('图的光谱排序:\n',SO) 
图的光谱排序: ['4', '2', '1', '0', '5', 'b', 'c', 'a', '3'] 

相关文章:

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明代码讲解 文章目录【Python--NetworkX】函数说明代码讲解1. 介绍1.1 前言1.2 图的类型(Graph Types)1.3 常用方法2. 代码示例1. 介绍 1.1 前言 NetworkX是复杂网络研究领域中的常用Python包。 1.2 图的类型(G…...

【Jqgrid分页勾选保存】三步实现表格分页勾选(取消勾选)保存(附源码)

目录1、创建临时存储数组,初始化赋值2、单行选中与取消,调整数组3、全选与取消全选,调整数组4、输出数组保存5、片尾彩蛋【写在前面】表格可以说是在我们的web页面中是最常见的,之前我们介绍过layui表格翻页勾选的实现过程&#x…...

Appium移动自动化测试——app控件获取之uiautomatorviewer

下载手机YY http://yydl.duowan.com/mobile/yymobile_client-android/5.4.2/yymobile_client-5.4.2-881.apk 若链接失效,请自行百度 新建maven空白工程 前置条件:安装eclipse,及其maven插件,请自行百度 新建的工程如下&#xf…...

webpack、vite、vue-cli、create-vue 的区别

webpack、vite、vue-cli、create-vue 的区别 首先说结论 Rollup更适合打包库,webpack更适合打包项目应用,vite基于rollup实现了热更新也适合打包项目。 功能工具工具脚手架vue-clicreate-vue构建项目vite打包代码webpackrollup 脚手架:用于初始化&#…...

数据结构——TreeMap、TreeSet与HashMap、HashSet

目录 一、Map 1、定义 2、常用方法 3、注意 二、TreeMap 三、HashMap 1、定义 2、冲突定义 3、冲突避免方法——哈希函数设计 (1)、直接定制法(常用) (2)、除留余数法(常用) (3)、平方取中法 &…...

Spring Boot学习篇(十三)

Spring Boot学习篇(十三) shiro安全框架使用篇(五) 1 准备工作 1.1 在SysUserMapper.xml中书写自定义标签 <select id"findRoles" resultType"string">select name from sys_role where id (select roleid from sys_user_role where userid (S…...

微软Bing的AI人工只能对话体验名额申请教程

微软Bing 免费体验名额申请教程流程ChatGPT这东西可太过火了。国外国内&#xff0c;圈里圈外都是人声鼎沸。微软&#xff0c;谷歌&#xff0c;百度这些大佬纷纷出手。连看个同花顺都有GPT概念了&#xff0c;搞技术&#xff0c;做生意的看来都盯上了 流程 下面就讲一下如何申…...

怎么打造WhatsApp Team?SaleSmartly(ss客服)告诉你

关键词&#xff1a;WhatsApp Team SaleSmartly&#xff08;ss客服&#xff09; 您是否正在寻找一种让您的团队能够在 WhatsApp协作消息传递的解决方案?拥有了 WhatsApp Team&#xff0c;不仅效率提升&#xff0c;还可以在智能聊天工具中比如SaleSmartly&#xff08;ss客服&…...

IPV4地址的原理和配置

第三章&#xff1a;IP地址的配置 IPv4&#xff08;Internet Protocol Version 4&#xff09;协议族是TCP/IP协议族中最为核心的协议族。它工作在TCP/IP协议栈的网络层&#xff0c;该层与OSI参考模型的网络层相对应。网络层提供了无连接数据传输服务&#xff0c;即网络在发送分…...

软件测试面试准备——(一)Selenium(1)基础问题及自动化测试

滴滴面试&#xff1a;1. 自己负责哪部分功能&#xff1f;农餐对接系统分为了两大子系统&#xff0c;一个是个人订餐系统&#xff0c;二是餐馆、个人与农产品供应商进行农产品交易系统。我主要负责组织测试人员对该系统进行测试。我们测试分为两个阶段&#xff1a;一、功能测试阶…...

AcWing 1230.K倍区间

AcWing 1230. K倍区间 题目描述 给定一个长度为 NNN 的数列&#xff0c;A1,A2,…ANA_1, A_2, … A_NA1​,A2​,…AN​ &#xff0c;如果其中一段连续的子序列 Ai,Ai1,…AjA_i, A_{i1}, … A_jAi​,Ai1​,…Aj​ 之和是 KKK 的倍数&#xff0c;我们就称这个区间 [i,j][i,j][i,…...

kubernetes集群部署springcloud项目【AL】【未写完】

kubernetes集群部署springcloud项目【AL】 &#xff08;先手工做&#xff0c;非自动化&#xff09; #环境&#xff1a; 192.168.73.138 master 192.168.73.139 node1 192.168.73.140 node2 192.168.73.137 harbor、mysqlgit clone https://github.com/lizhenliang/simple-…...

各种音频接口比较

时间 参考&#xff1a;https://www.bilibili.com/video/BV1SL4y1q7GZ/?spm_id_from333.337.search-card.all.click&vd_source00bd76f9d6dc090461cddd9f0deb2d51&#xff0c; https://blog.csdn.net/weixin_43794311/article/details/128941346 接口名字时间公司支持格式…...

软件测试面试理论(超详细)

【面试理论知识】1、你的测试职业发展是什么? 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师奔去。而且我也有初步的职业规划&#xff0c;前3年积累测试经验&#xff0c;按如何做好测试工程师的要点去要求自己…...

c++学习笔记-二进制文件操作(哔站-黑马程序员c++教学视频)

一、基本概念 以二进制的方式对文件进行读写操作 打开方式指定为 ios::binary 优点&#xff1a;可以写入自己定义的数据类型 1、写文件 二进制方式写文件&#xff1a;流对象调用成员write 函数原型&#xff1a;ostream& write(const char * buffer,int len);参数解释…...

内网渗透(二十三)之Windows协议认证和密码抓取-Mimikatz介绍和各种模块使用方法

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…...

Nginx if的使用教程

if指令该指令用来支持条件判断&#xff0c;并根据条件判断结果选择不同的Nginx配置。语法if (condition){...}默认值—位置server、locationcondition为判定条件&#xff0c;可以支持以下写法&#xff1a;1. 变量名。如果变量名对应的值为空字符串或"0"&#xff0c;i…...

备考蓝桥杯【快速排序和归并排序】

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

Taro使用微信OCR插件无法调用onSuccess回调问题

Taro使用微信插件无法调用onSuccess回调问题小程序后台添加插件在开放社区购买相应的套餐详细步骤1.在app.config.js中添加如下代码2.在页面的page.config.js添加插件3.使用ocr-navigator识别身份证小程序后台添加插件 在开放社区购买相应的套餐 购买地址 详细步骤 1.在app.…...

【Java】代码块的细节你搞懂了吗(基础知识七)

希望像唠嗑一样&#xff0c;one step one futher。 目录 &#xff08;1&#xff09;代码块的应用场景 &#xff08;2&#xff09;代码块的细节 1.static 代码块只加载一次 2.当调用类的静态成员时&#xff0c;类会加载 3. 使用类的静态成员时&#xff0c;static代码块会被执…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...