当前位置: 首页 > news >正文

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明+代码讲解

文章目录

  • 【Python--NetworkX】函数说明+代码讲解
    • 1. 介绍
      • 1.1 前言
      • 1.2 图的类型(Graph Types)
      • 1.3 常用方法
    • 2. 代码示例

1. 介绍

1.1 前言

NetworkX是复杂网络研究领域中的常用Python包。

1.2 图的类型(Graph Types)

允许以可哈希的object作为节点,任何Python object作为边属性。

如何选择使用哪种图:
1
这里解释一下什么是平行边:连接一对顶点的两条边叫做平行边,即,无向图中,两个顶点间有多条边,他们叫做平行边,打个比方,北京和上海直接可以 是公路、铁路、飞机,那么他们互为平行边。

1.3 常用方法

  • 创建一个空的图
    1)无向图:G = nx.Graph()
    2)有向图:DG = nx.DiGraph()
  • 将有向图转换为无向图:G = nx.Graph(DG)
  • 图是否有向:G.is_directed() 返回布尔值
  • 添加节点
    1)直接添加一个节点(任何object都可以作为节点,包括另一个图)G.add_node(1)、G.add_node(DG)
    2)从任何容器加点:a list, dict, set or even the lines from a file or the nodes from another graph…;G.add_nodes_from() 或 nx.path_graph()
  • 添加边
    1)添加一条边 G.add_edge(u, v)
    2)添加一个边的列表 G.add_edges_from([(1, 2), (1, 3)])
    3)添加一个边的collection G.add_edges_from(H.edges)
    4)如果添加的边的点不存在于图中,会自动添上相应节点而不报错
  • 属性attribute
    1)图的节点/边/图都可以在关联的attribute字典中以键值对key/value形式存储attribute(key一定要是可哈希的)
    2)默认情况下属性字典是空的
    3)可以通过add_edge() add_node() 方法或直接操作分别名为graph edges nodes的属性字典来进行操作

2. 代码示例

import networkx as nx
import numpy as np #定义图的节点和边 
nodes=['0','1','2','3','4','5','a','b','c'] 
edges=[('0','0',1),('0','1',1),('0','5',1),('0','5',2),('1','2',3),('1','4',5),('2','1',7),('2','4',6),('a','b',0.5),('b','c',0.5),('c','a',0.5)] plt.subplots(1,2,figsize=(10,3)) #定义一个无向图和有向图 
G1 = nx.Graph() 
G1.add_nodes_from(nodes) 
G1.add_weighted_edges_from(edges) G2 = nx.DiGraph() 
G2.add_nodes_from(nodes) 
G2.add_weighted_edges_from(edges) pos1=nx.circular_layout(G1) 
pos2=nx.circular_layout(G2) #画出无向图和有向图 
plt.subplot(121) 
nx.draw(G1,pos1, with_labels=True, font_weight='bold') 
plt.title('无向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.subplot(122) 
nx.draw(G2,pos2, with_labels=True, font_weight='bold') 
plt.title('有向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.show() #控制numpy输出小数位数 
np.set_printoptions(precision=3)  #邻接矩阵 
A = nx.adjacency_matrix(G1) 
print('邻接矩阵:\n',A.todense()) 
邻接矩阵: [[0.  0.  0.  0.  5.  0.  0.  0.  6. ] [0.  0.  0.  2.  0.  0.  0.  0.  0. ] [0.  0.  0.  0.  0.  0.5 0.5 0.  0. ] [0.  2.  0.  1.  1.  0.  0.  0.  0. ] [5.  0.  0.  1.  0.  0.  0.  0.  7. ] [0.  0.  0.5 0.  0.  0.  0.5 0.  0. ] [0.  0.  0.5 0.  0.  0.5 0.  0.  0. ] [0.  0.  0.  0.  0.  0.  0.  0.  0. ] [6.  0.  0.  0.  7.  0.  0.  0.  0. ]] #关联矩阵 
I = nx.incidence_matrix(G1) 
print('\n关联矩阵:\n',I.todense()) 
关联矩阵: [[1. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 1. 0. 0. 0.] [0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 0. 0. 1. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 1. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0. 0. 1. 0.]] #拉普拉斯矩阵 
L=nx.laplacian_matrix(G1) 
print('\n拉普拉斯矩阵:\n',L.todense()) 
拉普拉斯矩阵: [[11.   0.   0.   0.  -5.   0.   0.   0.  -6. ] [ 0.   2.   0.  -2.   0.   0.   0.   0.   0. ] [ 0.   0.   1.   0.   0.  -0.5 -0.5  0.   0. ] [ 0.  -2.   0.   3.  -1.   0.   0.   0.   0. ] [-5.   0.   0.  -1.  13.   0.   0.   0.  -7. ] [ 0.   0.  -0.5  0.   0.   1.  -0.5  0.   0. ] [ 0.   0.  -0.5  0.   0.  -0.5  1.   0.   0. ] [ 0.   0.   0.   0.   0.   0.   0.   0.   0. ] [-6.   0.   0.   0.  -7.   0.   0.   0.  13. ]] #标准化的拉普拉斯矩阵 
NL=nx.normalized_laplacian_matrix(G1) 
print('标准化的拉普拉斯矩阵:\n',NL.todense()) 
标准化的拉普拉斯矩阵: [[ 1.     0.     0.     0.    -0.418  0.     0.     0.    -0.502] [ 0.     1.     0.    -0.707  0.     0.     0.     0.     0.   ] [ 0.     0.     1.     0.     0.    -0.5   -0.5    0.     0.   ] [ 0.    -0.707  0.     0.75  -0.139  0.     0.     0.     0.   ] [-0.418  0.     0.    -0.139  1.     0.     0.     0.    -0.538] [ 0.     0.    -0.5    0.     0.     1.    -0.5    0.     0.   ] [ 0.     0.    -0.5    0.     0.    -0.5    1.     0.     0.   ] [ 0.     0.     0.     0.     0.     0.     0.     0.     0.   ] [-0.502  0.     0.     0.    -0.538  0.     0.     0.     1.   ]] #有向图拉普拉斯矩阵 
DL=nx.directed_laplacian_matrix(G2) 
print('\n有向拉普拉斯矩阵:\n',DL) 
有向拉普拉斯矩阵: [[ 0.889 -0.117 -0.029 -0.087 -0.319 -0.029 -0.029 -0.129 -0.242] [-0.117  0.889 -0.026 -0.278 -0.051 -0.026 -0.026 -0.114 -0.056] [-0.029 -0.026  0.994 -0.012 -0.009 -0.481 -0.481 -0.025 -0.01 ] [-0.087 -0.278 -0.012  0.757 -0.097 -0.012 -0.012 -0.052 -0.006] [-0.319 -0.051 -0.009 -0.097  0.994 -0.009 -0.009 -0.041 -0.434] [-0.029 -0.026 -0.481 -0.012 -0.009  0.994 -0.481 -0.025 -0.01 ] [-0.029 -0.026 -0.481 -0.012 -0.009 -0.481  0.994 -0.025 -0.01 ] [-0.129 -0.114 -0.025 -0.052 -0.041 -0.025 -0.025  0.889 -0.045] [-0.242 -0.056 -0.01  -0.006 -0.434 -0.01  -0.01  -0.045  0.994]] #拉普拉斯算子的特征值 
LS=nx.laplacian_spectrum(G1) 
print('\n拉普拉斯算子的特征值:\n',LS) 
拉普拉斯算子的特征值: [-1.436e-15  0.000e+00  4.610e-16  7.000e-01  1.500e+00  1.500e+00 4.576e+00  1.660e+01  2.013e+01] #邻接矩阵的特征值 
AS=nx.adjacency_spectrum(G1) 
print('邻接矩阵的特征值:\n',AS) 
邻接矩阵的特征值: [12.068+0.000e+00j  2.588+0.000e+00j -7.219+0.000e+00j -4.925+0.000e+00j -1.513+0.000e+00j  1.   +0.000e+00j -0.5  +2.393e-17j -0.5  -2.393e-17j0.  +0.000e+00j]#无向图的代数连通性 
AC=nx.algebraic_connectivity(G1) 
print('无向图的代数连通性:\n',AC) 
无向图的代数连通性: 0.0 #图的光谱排序 
SO=nx.spectral_ordering(G1) 
print('图的光谱排序:\n',SO) 
图的光谱排序: ['4', '2', '1', '0', '5', 'b', 'c', 'a', '3'] 

相关文章:

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明代码讲解 文章目录【Python--NetworkX】函数说明代码讲解1. 介绍1.1 前言1.2 图的类型(Graph Types)1.3 常用方法2. 代码示例1. 介绍 1.1 前言 NetworkX是复杂网络研究领域中的常用Python包。 1.2 图的类型(G…...

【Jqgrid分页勾选保存】三步实现表格分页勾选(取消勾选)保存(附源码)

目录1、创建临时存储数组,初始化赋值2、单行选中与取消,调整数组3、全选与取消全选,调整数组4、输出数组保存5、片尾彩蛋【写在前面】表格可以说是在我们的web页面中是最常见的,之前我们介绍过layui表格翻页勾选的实现过程&#x…...

Appium移动自动化测试——app控件获取之uiautomatorviewer

下载手机YY http://yydl.duowan.com/mobile/yymobile_client-android/5.4.2/yymobile_client-5.4.2-881.apk 若链接失效,请自行百度 新建maven空白工程 前置条件:安装eclipse,及其maven插件,请自行百度 新建的工程如下&#xf…...

webpack、vite、vue-cli、create-vue 的区别

webpack、vite、vue-cli、create-vue 的区别 首先说结论 Rollup更适合打包库,webpack更适合打包项目应用,vite基于rollup实现了热更新也适合打包项目。 功能工具工具脚手架vue-clicreate-vue构建项目vite打包代码webpackrollup 脚手架:用于初始化&#…...

数据结构——TreeMap、TreeSet与HashMap、HashSet

目录 一、Map 1、定义 2、常用方法 3、注意 二、TreeMap 三、HashMap 1、定义 2、冲突定义 3、冲突避免方法——哈希函数设计 (1)、直接定制法(常用) (2)、除留余数法(常用) (3)、平方取中法 &…...

Spring Boot学习篇(十三)

Spring Boot学习篇(十三) shiro安全框架使用篇(五) 1 准备工作 1.1 在SysUserMapper.xml中书写自定义标签 <select id"findRoles" resultType"string">select name from sys_role where id (select roleid from sys_user_role where userid (S…...

微软Bing的AI人工只能对话体验名额申请教程

微软Bing 免费体验名额申请教程流程ChatGPT这东西可太过火了。国外国内&#xff0c;圈里圈外都是人声鼎沸。微软&#xff0c;谷歌&#xff0c;百度这些大佬纷纷出手。连看个同花顺都有GPT概念了&#xff0c;搞技术&#xff0c;做生意的看来都盯上了 流程 下面就讲一下如何申…...

怎么打造WhatsApp Team?SaleSmartly(ss客服)告诉你

关键词&#xff1a;WhatsApp Team SaleSmartly&#xff08;ss客服&#xff09; 您是否正在寻找一种让您的团队能够在 WhatsApp协作消息传递的解决方案?拥有了 WhatsApp Team&#xff0c;不仅效率提升&#xff0c;还可以在智能聊天工具中比如SaleSmartly&#xff08;ss客服&…...

IPV4地址的原理和配置

第三章&#xff1a;IP地址的配置 IPv4&#xff08;Internet Protocol Version 4&#xff09;协议族是TCP/IP协议族中最为核心的协议族。它工作在TCP/IP协议栈的网络层&#xff0c;该层与OSI参考模型的网络层相对应。网络层提供了无连接数据传输服务&#xff0c;即网络在发送分…...

软件测试面试准备——(一)Selenium(1)基础问题及自动化测试

滴滴面试&#xff1a;1. 自己负责哪部分功能&#xff1f;农餐对接系统分为了两大子系统&#xff0c;一个是个人订餐系统&#xff0c;二是餐馆、个人与农产品供应商进行农产品交易系统。我主要负责组织测试人员对该系统进行测试。我们测试分为两个阶段&#xff1a;一、功能测试阶…...

AcWing 1230.K倍区间

AcWing 1230. K倍区间 题目描述 给定一个长度为 NNN 的数列&#xff0c;A1,A2,…ANA_1, A_2, … A_NA1​,A2​,…AN​ &#xff0c;如果其中一段连续的子序列 Ai,Ai1,…AjA_i, A_{i1}, … A_jAi​,Ai1​,…Aj​ 之和是 KKK 的倍数&#xff0c;我们就称这个区间 [i,j][i,j][i,…...

kubernetes集群部署springcloud项目【AL】【未写完】

kubernetes集群部署springcloud项目【AL】 &#xff08;先手工做&#xff0c;非自动化&#xff09; #环境&#xff1a; 192.168.73.138 master 192.168.73.139 node1 192.168.73.140 node2 192.168.73.137 harbor、mysqlgit clone https://github.com/lizhenliang/simple-…...

各种音频接口比较

时间 参考&#xff1a;https://www.bilibili.com/video/BV1SL4y1q7GZ/?spm_id_from333.337.search-card.all.click&vd_source00bd76f9d6dc090461cddd9f0deb2d51&#xff0c; https://blog.csdn.net/weixin_43794311/article/details/128941346 接口名字时间公司支持格式…...

软件测试面试理论(超详细)

【面试理论知识】1、你的测试职业发展是什么? 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师奔去。而且我也有初步的职业规划&#xff0c;前3年积累测试经验&#xff0c;按如何做好测试工程师的要点去要求自己…...

c++学习笔记-二进制文件操作(哔站-黑马程序员c++教学视频)

一、基本概念 以二进制的方式对文件进行读写操作 打开方式指定为 ios::binary 优点&#xff1a;可以写入自己定义的数据类型 1、写文件 二进制方式写文件&#xff1a;流对象调用成员write 函数原型&#xff1a;ostream& write(const char * buffer,int len);参数解释…...

内网渗透(二十三)之Windows协议认证和密码抓取-Mimikatz介绍和各种模块使用方法

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…...

Nginx if的使用教程

if指令该指令用来支持条件判断&#xff0c;并根据条件判断结果选择不同的Nginx配置。语法if (condition){...}默认值—位置server、locationcondition为判定条件&#xff0c;可以支持以下写法&#xff1a;1. 变量名。如果变量名对应的值为空字符串或"0"&#xff0c;i…...

备考蓝桥杯【快速排序和归并排序】

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

Taro使用微信OCR插件无法调用onSuccess回调问题

Taro使用微信插件无法调用onSuccess回调问题小程序后台添加插件在开放社区购买相应的套餐详细步骤1.在app.config.js中添加如下代码2.在页面的page.config.js添加插件3.使用ocr-navigator识别身份证小程序后台添加插件 在开放社区购买相应的套餐 购买地址 详细步骤 1.在app.…...

【Java】代码块的细节你搞懂了吗(基础知识七)

希望像唠嗑一样&#xff0c;one step one futher。 目录 &#xff08;1&#xff09;代码块的应用场景 &#xff08;2&#xff09;代码块的细节 1.static 代码块只加载一次 2.当调用类的静态成员时&#xff0c;类会加载 3. 使用类的静态成员时&#xff0c;static代码块会被执…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...