当前位置: 首页 > news >正文

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明+代码讲解

文章目录

  • 【Python--NetworkX】函数说明+代码讲解
    • 1. 介绍
      • 1.1 前言
      • 1.2 图的类型(Graph Types)
      • 1.3 常用方法
    • 2. 代码示例

1. 介绍

1.1 前言

NetworkX是复杂网络研究领域中的常用Python包。

1.2 图的类型(Graph Types)

允许以可哈希的object作为节点,任何Python object作为边属性。

如何选择使用哪种图:
1
这里解释一下什么是平行边:连接一对顶点的两条边叫做平行边,即,无向图中,两个顶点间有多条边,他们叫做平行边,打个比方,北京和上海直接可以 是公路、铁路、飞机,那么他们互为平行边。

1.3 常用方法

  • 创建一个空的图
    1)无向图:G = nx.Graph()
    2)有向图:DG = nx.DiGraph()
  • 将有向图转换为无向图:G = nx.Graph(DG)
  • 图是否有向:G.is_directed() 返回布尔值
  • 添加节点
    1)直接添加一个节点(任何object都可以作为节点,包括另一个图)G.add_node(1)、G.add_node(DG)
    2)从任何容器加点:a list, dict, set or even the lines from a file or the nodes from another graph…;G.add_nodes_from() 或 nx.path_graph()
  • 添加边
    1)添加一条边 G.add_edge(u, v)
    2)添加一个边的列表 G.add_edges_from([(1, 2), (1, 3)])
    3)添加一个边的collection G.add_edges_from(H.edges)
    4)如果添加的边的点不存在于图中,会自动添上相应节点而不报错
  • 属性attribute
    1)图的节点/边/图都可以在关联的attribute字典中以键值对key/value形式存储attribute(key一定要是可哈希的)
    2)默认情况下属性字典是空的
    3)可以通过add_edge() add_node() 方法或直接操作分别名为graph edges nodes的属性字典来进行操作

2. 代码示例

import networkx as nx
import numpy as np #定义图的节点和边 
nodes=['0','1','2','3','4','5','a','b','c'] 
edges=[('0','0',1),('0','1',1),('0','5',1),('0','5',2),('1','2',3),('1','4',5),('2','1',7),('2','4',6),('a','b',0.5),('b','c',0.5),('c','a',0.5)] plt.subplots(1,2,figsize=(10,3)) #定义一个无向图和有向图 
G1 = nx.Graph() 
G1.add_nodes_from(nodes) 
G1.add_weighted_edges_from(edges) G2 = nx.DiGraph() 
G2.add_nodes_from(nodes) 
G2.add_weighted_edges_from(edges) pos1=nx.circular_layout(G1) 
pos2=nx.circular_layout(G2) #画出无向图和有向图 
plt.subplot(121) 
nx.draw(G1,pos1, with_labels=True, font_weight='bold') 
plt.title('无向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.subplot(122) 
nx.draw(G2,pos2, with_labels=True, font_weight='bold') 
plt.title('有向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.show() #控制numpy输出小数位数 
np.set_printoptions(precision=3)  #邻接矩阵 
A = nx.adjacency_matrix(G1) 
print('邻接矩阵:\n',A.todense()) 
邻接矩阵: [[0.  0.  0.  0.  5.  0.  0.  0.  6. ] [0.  0.  0.  2.  0.  0.  0.  0.  0. ] [0.  0.  0.  0.  0.  0.5 0.5 0.  0. ] [0.  2.  0.  1.  1.  0.  0.  0.  0. ] [5.  0.  0.  1.  0.  0.  0.  0.  7. ] [0.  0.  0.5 0.  0.  0.  0.5 0.  0. ] [0.  0.  0.5 0.  0.  0.5 0.  0.  0. ] [0.  0.  0.  0.  0.  0.  0.  0.  0. ] [6.  0.  0.  0.  7.  0.  0.  0.  0. ]] #关联矩阵 
I = nx.incidence_matrix(G1) 
print('\n关联矩阵:\n',I.todense()) 
关联矩阵: [[1. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 1. 0. 0. 0.] [0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 0. 0. 1. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 1. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0. 0. 1. 0.]] #拉普拉斯矩阵 
L=nx.laplacian_matrix(G1) 
print('\n拉普拉斯矩阵:\n',L.todense()) 
拉普拉斯矩阵: [[11.   0.   0.   0.  -5.   0.   0.   0.  -6. ] [ 0.   2.   0.  -2.   0.   0.   0.   0.   0. ] [ 0.   0.   1.   0.   0.  -0.5 -0.5  0.   0. ] [ 0.  -2.   0.   3.  -1.   0.   0.   0.   0. ] [-5.   0.   0.  -1.  13.   0.   0.   0.  -7. ] [ 0.   0.  -0.5  0.   0.   1.  -0.5  0.   0. ] [ 0.   0.  -0.5  0.   0.  -0.5  1.   0.   0. ] [ 0.   0.   0.   0.   0.   0.   0.   0.   0. ] [-6.   0.   0.   0.  -7.   0.   0.   0.  13. ]] #标准化的拉普拉斯矩阵 
NL=nx.normalized_laplacian_matrix(G1) 
print('标准化的拉普拉斯矩阵:\n',NL.todense()) 
标准化的拉普拉斯矩阵: [[ 1.     0.     0.     0.    -0.418  0.     0.     0.    -0.502] [ 0.     1.     0.    -0.707  0.     0.     0.     0.     0.   ] [ 0.     0.     1.     0.     0.    -0.5   -0.5    0.     0.   ] [ 0.    -0.707  0.     0.75  -0.139  0.     0.     0.     0.   ] [-0.418  0.     0.    -0.139  1.     0.     0.     0.    -0.538] [ 0.     0.    -0.5    0.     0.     1.    -0.5    0.     0.   ] [ 0.     0.    -0.5    0.     0.    -0.5    1.     0.     0.   ] [ 0.     0.     0.     0.     0.     0.     0.     0.     0.   ] [-0.502  0.     0.     0.    -0.538  0.     0.     0.     1.   ]] #有向图拉普拉斯矩阵 
DL=nx.directed_laplacian_matrix(G2) 
print('\n有向拉普拉斯矩阵:\n',DL) 
有向拉普拉斯矩阵: [[ 0.889 -0.117 -0.029 -0.087 -0.319 -0.029 -0.029 -0.129 -0.242] [-0.117  0.889 -0.026 -0.278 -0.051 -0.026 -0.026 -0.114 -0.056] [-0.029 -0.026  0.994 -0.012 -0.009 -0.481 -0.481 -0.025 -0.01 ] [-0.087 -0.278 -0.012  0.757 -0.097 -0.012 -0.012 -0.052 -0.006] [-0.319 -0.051 -0.009 -0.097  0.994 -0.009 -0.009 -0.041 -0.434] [-0.029 -0.026 -0.481 -0.012 -0.009  0.994 -0.481 -0.025 -0.01 ] [-0.029 -0.026 -0.481 -0.012 -0.009 -0.481  0.994 -0.025 -0.01 ] [-0.129 -0.114 -0.025 -0.052 -0.041 -0.025 -0.025  0.889 -0.045] [-0.242 -0.056 -0.01  -0.006 -0.434 -0.01  -0.01  -0.045  0.994]] #拉普拉斯算子的特征值 
LS=nx.laplacian_spectrum(G1) 
print('\n拉普拉斯算子的特征值:\n',LS) 
拉普拉斯算子的特征值: [-1.436e-15  0.000e+00  4.610e-16  7.000e-01  1.500e+00  1.500e+00 4.576e+00  1.660e+01  2.013e+01] #邻接矩阵的特征值 
AS=nx.adjacency_spectrum(G1) 
print('邻接矩阵的特征值:\n',AS) 
邻接矩阵的特征值: [12.068+0.000e+00j  2.588+0.000e+00j -7.219+0.000e+00j -4.925+0.000e+00j -1.513+0.000e+00j  1.   +0.000e+00j -0.5  +2.393e-17j -0.5  -2.393e-17j0.  +0.000e+00j]#无向图的代数连通性 
AC=nx.algebraic_connectivity(G1) 
print('无向图的代数连通性:\n',AC) 
无向图的代数连通性: 0.0 #图的光谱排序 
SO=nx.spectral_ordering(G1) 
print('图的光谱排序:\n',SO) 
图的光谱排序: ['4', '2', '1', '0', '5', 'b', 'c', 'a', '3'] 

相关文章:

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明代码讲解 文章目录【Python--NetworkX】函数说明代码讲解1. 介绍1.1 前言1.2 图的类型(Graph Types)1.3 常用方法2. 代码示例1. 介绍 1.1 前言 NetworkX是复杂网络研究领域中的常用Python包。 1.2 图的类型(G…...

【Jqgrid分页勾选保存】三步实现表格分页勾选(取消勾选)保存(附源码)

目录1、创建临时存储数组,初始化赋值2、单行选中与取消,调整数组3、全选与取消全选,调整数组4、输出数组保存5、片尾彩蛋【写在前面】表格可以说是在我们的web页面中是最常见的,之前我们介绍过layui表格翻页勾选的实现过程&#x…...

Appium移动自动化测试——app控件获取之uiautomatorviewer

下载手机YY http://yydl.duowan.com/mobile/yymobile_client-android/5.4.2/yymobile_client-5.4.2-881.apk 若链接失效,请自行百度 新建maven空白工程 前置条件:安装eclipse,及其maven插件,请自行百度 新建的工程如下&#xf…...

webpack、vite、vue-cli、create-vue 的区别

webpack、vite、vue-cli、create-vue 的区别 首先说结论 Rollup更适合打包库,webpack更适合打包项目应用,vite基于rollup实现了热更新也适合打包项目。 功能工具工具脚手架vue-clicreate-vue构建项目vite打包代码webpackrollup 脚手架:用于初始化&#…...

数据结构——TreeMap、TreeSet与HashMap、HashSet

目录 一、Map 1、定义 2、常用方法 3、注意 二、TreeMap 三、HashMap 1、定义 2、冲突定义 3、冲突避免方法——哈希函数设计 (1)、直接定制法(常用) (2)、除留余数法(常用) (3)、平方取中法 &…...

Spring Boot学习篇(十三)

Spring Boot学习篇(十三) shiro安全框架使用篇(五) 1 准备工作 1.1 在SysUserMapper.xml中书写自定义标签 <select id"findRoles" resultType"string">select name from sys_role where id (select roleid from sys_user_role where userid (S…...

微软Bing的AI人工只能对话体验名额申请教程

微软Bing 免费体验名额申请教程流程ChatGPT这东西可太过火了。国外国内&#xff0c;圈里圈外都是人声鼎沸。微软&#xff0c;谷歌&#xff0c;百度这些大佬纷纷出手。连看个同花顺都有GPT概念了&#xff0c;搞技术&#xff0c;做生意的看来都盯上了 流程 下面就讲一下如何申…...

怎么打造WhatsApp Team?SaleSmartly(ss客服)告诉你

关键词&#xff1a;WhatsApp Team SaleSmartly&#xff08;ss客服&#xff09; 您是否正在寻找一种让您的团队能够在 WhatsApp协作消息传递的解决方案?拥有了 WhatsApp Team&#xff0c;不仅效率提升&#xff0c;还可以在智能聊天工具中比如SaleSmartly&#xff08;ss客服&…...

IPV4地址的原理和配置

第三章&#xff1a;IP地址的配置 IPv4&#xff08;Internet Protocol Version 4&#xff09;协议族是TCP/IP协议族中最为核心的协议族。它工作在TCP/IP协议栈的网络层&#xff0c;该层与OSI参考模型的网络层相对应。网络层提供了无连接数据传输服务&#xff0c;即网络在发送分…...

软件测试面试准备——(一)Selenium(1)基础问题及自动化测试

滴滴面试&#xff1a;1. 自己负责哪部分功能&#xff1f;农餐对接系统分为了两大子系统&#xff0c;一个是个人订餐系统&#xff0c;二是餐馆、个人与农产品供应商进行农产品交易系统。我主要负责组织测试人员对该系统进行测试。我们测试分为两个阶段&#xff1a;一、功能测试阶…...

AcWing 1230.K倍区间

AcWing 1230. K倍区间 题目描述 给定一个长度为 NNN 的数列&#xff0c;A1,A2,…ANA_1, A_2, … A_NA1​,A2​,…AN​ &#xff0c;如果其中一段连续的子序列 Ai,Ai1,…AjA_i, A_{i1}, … A_jAi​,Ai1​,…Aj​ 之和是 KKK 的倍数&#xff0c;我们就称这个区间 [i,j][i,j][i,…...

kubernetes集群部署springcloud项目【AL】【未写完】

kubernetes集群部署springcloud项目【AL】 &#xff08;先手工做&#xff0c;非自动化&#xff09; #环境&#xff1a; 192.168.73.138 master 192.168.73.139 node1 192.168.73.140 node2 192.168.73.137 harbor、mysqlgit clone https://github.com/lizhenliang/simple-…...

各种音频接口比较

时间 参考&#xff1a;https://www.bilibili.com/video/BV1SL4y1q7GZ/?spm_id_from333.337.search-card.all.click&vd_source00bd76f9d6dc090461cddd9f0deb2d51&#xff0c; https://blog.csdn.net/weixin_43794311/article/details/128941346 接口名字时间公司支持格式…...

软件测试面试理论(超详细)

【面试理论知识】1、你的测试职业发展是什么? 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师奔去。而且我也有初步的职业规划&#xff0c;前3年积累测试经验&#xff0c;按如何做好测试工程师的要点去要求自己…...

c++学习笔记-二进制文件操作(哔站-黑马程序员c++教学视频)

一、基本概念 以二进制的方式对文件进行读写操作 打开方式指定为 ios::binary 优点&#xff1a;可以写入自己定义的数据类型 1、写文件 二进制方式写文件&#xff1a;流对象调用成员write 函数原型&#xff1a;ostream& write(const char * buffer,int len);参数解释…...

内网渗透(二十三)之Windows协议认证和密码抓取-Mimikatz介绍和各种模块使用方法

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…...

Nginx if的使用教程

if指令该指令用来支持条件判断&#xff0c;并根据条件判断结果选择不同的Nginx配置。语法if (condition){...}默认值—位置server、locationcondition为判定条件&#xff0c;可以支持以下写法&#xff1a;1. 变量名。如果变量名对应的值为空字符串或"0"&#xff0c;i…...

备考蓝桥杯【快速排序和归并排序】

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

Taro使用微信OCR插件无法调用onSuccess回调问题

Taro使用微信插件无法调用onSuccess回调问题小程序后台添加插件在开放社区购买相应的套餐详细步骤1.在app.config.js中添加如下代码2.在页面的page.config.js添加插件3.使用ocr-navigator识别身份证小程序后台添加插件 在开放社区购买相应的套餐 购买地址 详细步骤 1.在app.…...

【Java】代码块的细节你搞懂了吗(基础知识七)

希望像唠嗑一样&#xff0c;one step one futher。 目录 &#xff08;1&#xff09;代码块的应用场景 &#xff08;2&#xff09;代码块的细节 1.static 代码块只加载一次 2.当调用类的静态成员时&#xff0c;类会加载 3. 使用类的静态成员时&#xff0c;static代码块会被执…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...