当前位置: 首页 > news >正文

超过DeepSeek、o3,Claude发布全球首个混合推理模型,并将完成新一轮35亿美元融资...

Anthropic于2025年2月25日发布全球首个“混合推理”AI模型Claude 3.7 Sonnet,并在融资层面取得重大进展,计划完成35亿美元的新一轮融资,估值将达615亿美元。以下是核心信息整理:

技术突破:双思维模型与代码能力

1. 混合推理模式

Claude 3.7 Sonnet首次整合“标准”和“扩展”两种思维模式:

  • 标准模式:快速响应简单问题(如事实查询),例如直接回答“埃菲尔铁塔高度为324米”。

  • 扩展模式:展示详细推理链,适用于数学、物理、编程等复杂任务。例如,用户可通过API控制模型的思考时间,并观察其逻辑分析过程。

    Anthropic强调,这种设计旨在模拟人脑的灵活思考方式,而非依赖独立模型处理不同任务。

2.代码能力超越DeepSeek与OpenAI

根据SWE Bench测试结果,Claude 3.7 Sonnet在解决真实软件问题上的表现显著优于DeepSeek-R1、OpenAI的o1/o3等模型。此外,其在TAU-bench(评估AI与用户及工具交互能力)和内部“宝可梦游戏测试”中均展现领先的决策与规划能力。

5a73b1c623853cd9328199fa38bf3c71.jpeg

3. 编程工具Claude Code

同步发布的Claude Code是一款终端编程助手,可执行代码编辑、测试驱动开发(TDD)、大规模重构等任务。早期测试显示,它能一次性完成原本需45分钟以上的人工任务,尤其擅长复杂调试和代码库管理。

23c87ff8b5f86b698d529acc2a172af6.png

二、商业化与融资进展

1. 融资规模与估值飙升

Anthropic本轮融资目标为35亿美元,远超最初计划的20亿美元,估值将达615亿美元,较此前私募估值(180亿美元)增长超3倍。主要投资者包括Lightspeed Venture Partners、General Catalyst等风投机构,阿布扎比MGX投资公司也在洽谈中910。

2. 市场定位与竞争策略

  • 企业市场布局:Claude 3.7 Sonnet已通过Anthropic API、Amazon Bedrock和Google Cloud等平台开放,定价与前代一致(输入3美元/百万token,输出15美元/百万token)710。

  • 应对挑战:尽管面临中国DeepSeek(低成本免费模型)的竞争,Anthropic仍聚焦企业实际需求,通过混合推理模型强化编程与复杂任务处理能力,巩固开发者与B端客户市场910。

三、行业影响与未来展望

1. 推动AI透明化与实用性

Claude 3.7 Sonnet公开推理过程的设计,被视为对DeepSeek等公司推动行业透明化的回应。不过,Anthropic强调其“思考链”仅展示逻辑路径,未必反映内部真实决策机制,未来可能根据用户反馈调整展示方式。

2. 竞争格局重塑

OpenAI CEO Sam Altman曾暗示将跟进混合模型方向,而Anthropic凭借此次发布抢占先机。结合其融资进展,该公司或进一步缩小与OpenAI(2024年收入37亿美元)的差距,成为少数能与巨头抗衡的AI初创企业。

Anthropic通过Claude 3.7 Sonnet的技术创新与大规模融资,展现了在生成式AI赛道中的强劲竞争力。其混合推理模型不仅突破现有技术框架,更通过Claude Code等工具深化开发者生态,为未来商业化落地奠定基础。这一进展或加速行业向“实用化AI”转型,推动AI从辅助工具向协作伙伴的角色演进。

📌 相关推荐

碾压 OpenAI,DeepSeek-R1 发布!如何在本地实现 DeepSeek?

更上层楼!仅用2GB资源,让最火的DeepSeek-R1在本机上奔跑!

再上层楼,让DeepSeek-R1在16G内存,无GPU的Windows笔记本上本地运行!

👇点击阅读原文,获取开源地址

🚀帮我们点亮一颗🌟,愿您的开发之路星光璀璨

相关文章:

超过DeepSeek、o3,Claude发布全球首个混合推理模型,并将完成新一轮35亿美元融资...

Anthropic于2025年2月25日发布全球首个“混合推理”AI模型Claude 3.7 Sonnet,并在融资层面取得重大进展,计划完成35亿美元的新一轮融资,估值将达615亿美元。以下是核心信息整理: 技术突破:双思维模型与代码能力 1. 混合…...

AI如何通过大数据分析提升制造效率和决策智能化

人工智能(AI)与大数据技术的融合,不仅重新定义了生产流程,更让企业实现了从“经验驱动”到“数据智能驱动”的跨越式升级。 从“模糊经验”到“精准洞察”​​ 传统制造业依赖人工经验制定生产计划,但面对复杂多变的市…...

Java和JavaScript的比较

语言类型: java:面相对象的编程语言,属于强类型; javascript:基于对象的脚本语言,属于弱类型; 用途: java:适合用于后端开发,Android应用开发&#xff0c…...

2. 在Linux 当中安装 Nginx(13步) 下载安装启动(详细说明+附加详细截图说明)

2. 在Linux 当中安装 Nginx(13步) 下载&安装&启动(详细说明附加详细截图说明) 文章目录 2. 在Linux 当中安装 Nginx(13步) 下载&安装&启动(详细说明附加详细截图说明)1. 在 Linxu 下安装 Nginx 的详细步骤2. 最后: 1. 在 Linxu 下安装 Nginx 的详细…...

大模型训练——pycharm连接实验室服务器

一、引言 我们在运行或者复现大佬论文代码的时候,笔记本的算力不够,需要使用实验室的服务器进行运行。可以直接在服务器的终端上执行,但是这样的话代码调试就不方便。而我们可以使用 pycharm 连接到服务器,既方便了代码调试&…...

实体机器人识别虚拟环境中障碍物

之前的内容已经实现了虚拟机器人识别实体机器人的功能,接下来就是实体机器人如何识别虚拟环境中的障碍物(包括虚拟环境中的障碍物和其他虚拟机器人)。 我做的是基于雷达的,所以主要要处理的是雷达的scan话题 我的虚拟机器人命名…...

修改`FSL Yocto Project Community BSP`用到的u-boot源码,使其能适配百问网(100ask)的开发板

前言 在博文 https://blog.csdn.net/wenhao_ir/article/details/145547974 中,我们利用官方提供的BSP(FSL Yocto Project Community BSP)构建了写到SD卡中的完整镜像,然后启动后发现存在不少问题,首要的问题就是u-boot不能识别网卡,在这篇博文中,我们就找到FSL Yocto Pro…...

Rk3568驱动开发_点亮led灯(手动挡)_5

1.MMU简介 完成虚拟空间到物理空间的映射 内存保护设立存储器的访问权限,设置虚拟存储空间的缓冲特性 stm32点灯可以直接操作寄存器,但是linux点灯不能直接访问寄存器,linux会使能mmu linux中操作的都是虚拟地址,要想访问物理地…...

十、大数据资源平台功能架构

一、大数据资源平台的功能架构图总体结构 大数据资源平台功能架构图 关键组件: 1.用户(顶行) 此部分标识与平台交互的各种利益相关者。 其中包括: 市领导 各部门分析师 区政府 外部组织 公民 开发人员 运营经理 2.功能模…...

LabVIEW不规则正弦波波峰波谷检测

在处理不规则正弦波信号时,准确检测波峰和波谷是分析和处理信号的关键任务。特别是在实验数据、传感器信号或其他非理想波形中,波峰和波谷的位置可以提供有价值的信息。然而,由于噪声干扰、信号畸变以及不规则性,波峰波谷的检测变…...

分布式主键生成服务

目录 一、使用线程安全的类——AtomicInteger或者AtomicLong 二、主键生成最简单写法(不推荐) 三、主键生成方法一:Long型id生成——雪花算法 四、主键生成方法二:流水号 (一)流水号概述 (二)添加配置 1.pom.xml 2.application.properties 3.创…...

如何通过网管提升运维效率?

网络系统在企业信息化系统扮演着越来越重要的作用,网络规模不断扩大,网络结构越来越复杂,传统的运维方式已经难以满足高效、稳定运行的要求。网管系统作为IT运维的重要工具,能够帮助企业实现网络的智能化管理,显著提升…...

(python)Arrow库使时间处理变得更简单

前言 Arrow库并不是简单的二次开发,而是在datetime的基础上进行了扩展和增强。它通过提供更简洁的API、强大的时区支持、丰富的格式化和解析功能以及人性化的显示,填补了datetime在某些功能上的空白。如果你需要更高效、更人性化的日期时间处理方式,Arrow库是一个不错的选择…...

机器学习数学基础:33.分半信度

分半信度(Split-Half Reliability)深度教程 专为零基础小白打造,全面掌握分半信度知识 一、深入理解分半信度 分半信度是一种用于评估测验内部一致性的重要方法,其核心思路在于将一个完整的测验拆分成两个部分,然后通…...

PyTorch 源码学习:GPU 内存管理之深入分析 CUDACachingAllocator

因引入 expandable_segments 机制,PyTorch 2.1.0 版本发生了较大变化。本文关注的是 PyTorch 原生的 GPU 内存管理机制,故研究的 PyTorch 版本为 2.0.0。代码地址: c10/cuda/CUDACachingAllocator.hc10/cuda/CUDACachingAllocator.cpp 更多内…...

0—QT ui界面一览

2025.2.26,感谢gpt4 1.控件盒子 1. Layouts(布局) 布局控件用于组织界面上的控件,确保它们的位置和排列方式合理。 Vertical Layout(垂直布局) :将控件按垂直方向排列。 建议:适…...

Jenkinsfile流水线构建教程

前言 Jenkins 是目前使用非常广泛的自动化流程的执行工具, 我们目前的一些自动化编译, 自动化测试都允许在 Jenkins 上面. 在 Jenkins 的术语里面, 一些自动化工作联合起来称之为流水线, 比如拉取代码, 编译, 运行自动化测试等. 本文的主要目的是引导你快速熟悉 Jenkinsfile …...

flex布局自定义一行几栏,靠左对齐===grid布局

模板 <div class"content"><div class"item">1222</div><div class"item">1222</div><div class"item">1222</div><div class"item">1222</div><div class"…...

开发HarmonyOS NEXT版五子棋游戏实战

大家好&#xff0c;我是 V 哥。首先要公布一个好消息&#xff0c;V 哥原创的《鸿蒙HarmonyOS NEXT 开发之路 卷1&#xff1a;ArkTS 语言篇》图书终于出版了&#xff0c;有正在学习鸿蒙的兄弟可以关注一下&#xff0c;写书真是磨人&#xff0c;耗时半年之久&#xff0c;感概一下…...

AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构

前言 人工智能技术的爆发式发展催生了多样化的AI模型生态&#xff0c;从通用对话到垂直领域应用&#xff0c;从数据挖掘到创意生成&#xff0c;各模型凭借其独特的技术优势与场景适配性&#xff0c;正在重塑全球产业格局。本文将以DeepSeek、ChatGPT、XAI&#xff08;可解释人…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...