《深度学习实战》第3集:循环神经网络(RNN)与序列建模
第3集:循环神经网络(RNN)与序列建模
引言
在深度学习领域,处理序列数据(如文本、语音、时间序列等)是一个重要的研究方向。传统的全连接网络和卷积神经网络(CNN)难以直接捕捉序列中的时序依赖关系,而循环神经网络(Recurrent Neural Network, RNN)应运而生。它通过引入“记忆”机制,能够有效建模序列数据的动态特性。然而,随着任务复杂度的提升,RNN 的局限性也逐渐显现,这促使了 LSTM 和 GRU 等改进模型的诞生。本集将深入探讨 RNN 的基本原理及其改进版本,并结合实战项目展示其应用价值。最后,我们还将讨论 Transformer 如何逐步取代 RNN 成为序列建模的新宠。
1. RNN 的基本原理与局限性
1.1 什么是 RNN?
RNN(Recurrent Neural Network)是一类适合处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环结构,可以将前一个时刻的信息传递到当前时刻,从而记忆序列中的历史信息。
RNN的工作原理:
- 在每个时间步,RNN通过接收当前输入和上一时刻的隐藏状态,更新当前的隐藏状态,并计算当前的输出。
- 这种结构允许RNN处理具有时序依赖关系的数据,如语音、文本和时间序列。
基本原理
RNN 的核心思想是通过一个循环结构,将当前时刻的输入与上一时刻的隐藏状态结合起来,从而实现对序列信息的记忆。具体来说,RNN 的计算公式如下:
h t = σ ( W h h t − 1 + W x x t + b ) h_t = \sigma(W_h h_{t-1} + W_x x_t + b) ht=σ(Whht−1+Wxxt+b)
其中:
- h t 是当前时刻的隐藏状态; h_t 是当前时刻的隐藏状态; ht是当前时刻的隐藏状态;
- x t 是当前时刻的输入; x_t 是当前时刻的输入; xt是当前时刻的输入;
- W h 和 W x 是权重矩阵; W_h 和 W_x 是权重矩阵; Wh和Wx是权重矩阵;
- b 是偏置项; b 是偏置项; b是偏置项;
- σ 是激活函数(通常为 t a n h 或 R e L U )。 \sigma 是激活函数(通常为 tanh 或 ReLU)。 σ是激活函数(通常为tanh或ReLU)。
通过这种递归计算,RNN 能够捕捉序列中的时序依赖关系。
局限性
尽管 RNN 在理论上可以处理任意长度的序列,但在实际训练中存在以下问题:
- 梯度消失/爆炸问题:由于反向传播过程中梯度需要通过时间维度传递,长序列会导致梯度指数级缩小或放大。当序列较长时,RNN的梯度容易在反向传播过程中消失或爆炸,使得模型难以学习长期依赖关系
- 长期依赖问题:RNN 难以记住距离较远的信息,因为隐藏状态会随着时间被覆盖或遗忘。RNN在捕捉较长时间依赖时效果较差,尤其是在长序列中,它无法保持足够的信息。
这些问题限制了 RNN 在复杂任务中的表现。
1.2 LSTM 和 GRU 的改进
为了克服 RNN 的局限性,研究者提出了两种改进模型:LSTM(Long Short-Term Memory)长短期记忆网络和 GRU(Gated Recurrent Unit)门控循环单元。它们通过引入门控机制,增强了模型对长期依赖的建模能力。
- LSTM(长短期记忆网络)
LSTM通过引入“记忆单元”和“门控机制”来控制信息流动,克服了传统RNN在长时间序列建模中的不足。LSTM的核心组件包括:
- 遗忘门:决定当前时间步的记忆单元中哪些信息需要遗忘。
- 输入门:控制当前时间步的输入信息如何更新到记忆单元中。
- 输出门:控制记忆单元的信息如何影响输出。
通过这些门控机制,LSTM能够有效地保持长期依赖信息,避免梯度消失问题。
- GRU(门控循环单元)
GRU是LSTM的简化版本,它将LSTM中的遗忘门和输入门合并为一个更新门,减少了参数量,使得训练更加高效。GRU的结构较LSTM更为简单,但在很多任务上,GRU与LSTM的表现相差不大。
LSTM 公式解释
LSTM 引入了三个门(输入门、遗忘门、输出门)以及一个细胞状态(cell state),用于控制信息的流动。其核心公式如下:
-
遗忘门:决定哪些信息需要从细胞状态中丢弃。
f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf⋅[ht−1,xt]+bf) -
输入门:决定哪些新信息需要添加到细胞状态中。
i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi⋅[ht−1,xt]+bi)
C ~ t = tanh ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC⋅[ht−1,xt]+bC) -
更新细胞状态:
C t = f t ⊙ C t − 1 + i t ⊙ C ~ t C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t Ct=ft⊙Ct−1+it⊙C~t -
输出门:决定当前时刻的隐藏状态。
o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo⋅[ht−1,xt]+bo)
h t = o t ⊙ tanh ( C t ) h_t = o_t \odot \tanh(C_t) ht=ot⊙tanh(Ct)
GRU公式解释
GRU 是 LSTM 的简化版本,将遗忘门和输入门合并为更新门,并移除了单独的细胞状态。其核心公式如下:
-
更新门:
z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz⋅[ht−1,xt]+bz) -
重置门:
r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(Wr⋅[ht−1,xt]+br) -
候选隐藏状态:
h ~ t = tanh ( W ⋅ [ r t ⊙ h t − 1 , x t ] + b ) \tilde{h}_t = \tanh(W \cdot [r_t \odot h_{t-1}, x_t] + b) h~t=tanh(W⋅[rt⊙ht−1,xt]+b) -
最终隐藏状态:
h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ~ t h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t ht=(1−zt)⊙ht−1+zt⊙h~t
LSTM 和 GRU 的门控机制使得它们能够更好地捕捉长期依赖关系,同时缓解了梯度消失问题。
1.3 序列建模的应用场景
RNN 及其变体广泛应用于以下领域:
- 语言建模:语言建模是自然语言处理中的一个重要任务,目标是根据前文的单词预测下一个单词。RNN、LSTM和GRU在语言建模中表现优异,能够捕捉句子中各个单词之间的时序依赖关系,可预测下一个单词的概率分布,常用于机器翻译、文本生成等任务。
- 时间序列预测:时间序列预测是使用历史数据预测未来的一个典型应用场景。例如,在股票市场中,我们希望基于历史价格数据预测未来的股价趋势。RNN、LSTM和GRU被广泛应用于金融领域的时间序列预测任务,也常用于天气预测等领域。
- 语音识别:将音频信号转化为文本。
- 视频分析:捕捉视频帧之间的时序关系。
2. 实战项目:使用 LSTM 预测股票价格趋势
2.1 项目背景
我们将使用LSTM模型来预测股票价格趋势。数据来源于Yahoo Finance,我们将使用过去的股票数据来预测未来几天的股票价格变化。
2.2 数据准备
首先,安装所需的库:
pip install yfinance pandas numpy matplotlib tensorflow scikit-learn
接着,获取股票数据并进行预处理:
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler# 获取股票数据
data = yf.download('AAPL', start='2010-01-01', end='2023-01-01', auto_adjust=True)# 使用收盘价
closing_prices = data['Close'].values.reshape(-1, 1)# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(closing_prices)# 创建训练数据(使用过去60天的数据预测下一天的价格)
def create_dataset(data, time_step=60):X, y = [], []for i in range(len(data)-time_step-1):X.append(data[i:(i+time_step), 0])y.append(data[i + time_step, 0])return np.array(X), np.array(y)X, y = create_dataset(scaled_data)# 重塑输入数据的形状为 [样本数, 时间步长, 特征数]
X = X.reshape(X.shape[0], X.shape[1], 1)# 划分训练集和测试集
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
2.3 构建LSTM模型
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(units=1))# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)
2.4 预测与可视化
# 使用模型进行预测
predictions = model.predict(X_test)# 反归一化预测结果
predictions = scaler.inverse_transform(predictions)
y_test = scaler.inverse_transform(y_test.reshape(-1, 1))# 可视化结果
plt.figure(figsize=(12, 6))
plt.plot(y_test, color='blue', label='Actual Stock Price')
plt.plot(predictions, color='red', label='Predicted Stock Price')
plt.title('Stock Price Prediction using LSTM')
plt.xlabel('Time')
plt.ylabel('Stock Price')
plt.legend()
plt.show()
** 代码汇总:**
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler# 获取股票数据
data = yf.download('AAPL', start='2010-01-01', end='2023-01-01', auto_adjust=True)if data.empty:print("No data found, check the stock symbol or try again later.")
else:# 使用收盘价closing_prices = data['Close'].values.reshape(-1, 1)# 数据归一化scaler = MinMaxScaler(feature_range=(0, 1))scaled_data = scaler.fit_transform(closing_prices)# 创建训练数据(使用过去60天的数据预测下一天的价格)def create_dataset(data, time_step=60):X, y = [], []for i in range(len(data)-time_step-1):X.append(data[i:(i+time_step), 0])y.append(data[i + time_step, 0])return np.array(X), np.array(y)X, y = create_dataset(scaled_data)# 重塑输入数据的形状为 [样本数, 时间步长, 特征数]X = X.reshape(X.shape[0], X.shape[1], 1)# 划分训练集和测试集train_size = int(len(X) * 0.8)X_train, X_test = X[:train_size], X[train_size:]y_train, y_test = y[:train_size], y[train_size:]from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import LSTM, Dense, Dropout# 构建LSTM模型model = Sequential()model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))model.add(Dropout(0.2))model.add(LSTM(units=50, return_sequences=False))model.add(Dropout(0.2))model.add(Dense(units=1))# 编译模型model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型model.fit(X_train, y_train, epochs=10, batch_size=32)# 使用模型进行预测predictions = model.predict(X_test)# 反归一化预测结果predictions = scaler.inverse_transform(predictions)y_test = scaler.inverse_transform(y_test.reshape(-1, 1))# 可视化结果plt.figure(figsize=(12, 6))plt.plot(y_test, color='blue', label='Actual Stock Price')plt.plot(predictions, color='red', label='Predicted Stock Price')plt.title('Stock Price Prediction using LSTM')plt.xlabel('Time')plt.ylabel('Stock Price')plt.legend()plt.show()
代码输出结果:
[*********************100%***********************] 1 of 1 completed
2025-02-25 22:43:23.883004: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-02-25 22:43:26.821365: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-02-25 22:43:29.733373: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
D:\python_projects\lstm_demo\Lib\site-packages\keras\src\layers\rnn\rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.super().__init__(**kwargs)
Epoch 1/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 4s 19ms/step - loss: 0.0037
Epoch 2/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 3.0320e-04
Epoch 3/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.5178e-04
Epoch 4/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.8054e-04
Epoch 5/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.1884e-04
Epoch 6/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.9784e-04
Epoch 7/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.7942e-04
Epoch 8/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.9470e-04
Epoch 9/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.5350e-04
Epoch 10/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.8230e-04
21/21 ━━━━━━━━━━━━━━━━━━━━ 1s 16ms/step
输出预测对比图片:
2.5 图解RNN和LSTM
-
RNN 展开图
-
LSTM 单元结构
( LSTM 单元结构图,标注输入门、遗忘门、输出门和细胞状态。)
3. 前沿关联:Transformer 在序列建模中的崛起
尽管LSTM和GRU在序列建模中取得了显著成果,但随着Transformer模型的出现,序列建模的格局发生了变化。Transformer模型通过自注意力机制能够并行处理序列数据,且在处理长距离依赖时更加高效。如今,Transformer模型已广泛应用于自然语言处理任务,如BERT和GPT系列模型。Transformer 模型凭借其自注意力机制(Self-Attention)彻底改变了序列建模领域。相比于 RNN,Transformer 具有以下优势:
- 并行化训练:无需按时间顺序处理序列,大幅提高了训练效率。
- 长程依赖建模:自注意力机制能够直接捕捉全局依赖关系。
- 广泛应用:Transformer 已成为 GPT、BERT 等大模型的核心架构。
尽管如此,RNN 仍然在某些特定任务(如实时序列处理)中具有不可替代的价值。理解 RNN 的原理及其改进版本,有助于我们更好地掌握现代深度学习技术的发展脉络。
总结
本集聚焦于循环神经网络(RNN)的基本原理及其改进模型 LSTM 和 GRU,并通过实战项目展示了它们在时间序列预测中的应用。同时,我们也探讨了 Transformer 的崛起如何推动序列建模进入新时代。下一集,我们将深入探讨 Transformer 的工作原理及其在自然语言处理中的革命性应用。敬请期待!
相关文章:

《深度学习实战》第3集:循环神经网络(RNN)与序列建模
第3集:循环神经网络(RNN)与序列建模 引言 在深度学习领域,处理序列数据(如文本、语音、时间序列等)是一个重要的研究方向。传统的全连接网络和卷积神经网络(CNN)难以直接捕捉序列中…...

winfrom的progressBar 鼠标移上去显示 进度条的时间
需求描述: 播放IPC摄像头(海康、大华)的录像回放,视频窗口下方有个进度条,能显示当前录像播放的进度,点击进度条能将视频跳转到指定的时间点继续播放... 现在需要再进度条上显示视频的时间,用来…...

如何在WordPress网站中查看移动版本—快速预览与自定义设置
在WordPress网站的构建过程中,确保网站在移动端的显示效果至关重要。毕竟,随着越来越多的用户通过手机访问互联网,一个优化良好的移动版网站将直接影响用户的留存率和访问体验。 如果你是WordPress网站的所有者,本文将向你介绍如…...
wordpress按分类ID调用最新、推荐、随机内容
在WordPress中,可以通过自定义查询(WP_Query)来按分类ID调用最新、推荐(自定义字段或标签)、随机内容。以下是一些示例代码,帮助你实现这些功能。 1. 按分类ID调用最新内容 以下代码可以调用指定分类ID下的最新文章: <?php // 设置分类…...

excel单、双字节字符转换函数(中英文输入法符号转换)
在Excel中通常使用函数WIDECHAR和ASC来实现单、双字节字符之间的转换。其中 WIDECHAR函数将所有的字符转换为双字节,ASC函数将所有的字符转换为单字节 首先来解释一下单双字节的含义。单字节一般对应英文输入法的输入,如英文字母,英文输入法…...

能不能用Ai来开发出一款APP?很早就想过能不能用Ai来开发出一款APP?
现在AI这么流行,长青很早就想过能不能用Ai来开发出一款APP? 然后从1月份开始长青就开始着手用AI写一款音乐app,参考了落雪音乐的开发技术栈,长青这里也准备用ReactNative去写。 首先声明一点,长青本身不会开发app的&a…...

lattice hdl实现spi接口
在lattice工具链中实现SPI接口通常涉及以下步骤: 定义硬件SPI接口的管脚。配置SPI时钟和模式。编写SPI主机或从机的控制逻辑。 展示了如何在Lattice工具链中使用HDL语言(例如Verilog)来配置SPI接口: lattice工程 顶层:spi_slave_top.v `timescale 1ns/ 1ps module spi_…...

超过DeepSeek、o3,Claude发布全球首个混合推理模型,并将完成新一轮35亿美元融资...
Anthropic于2025年2月25日发布全球首个“混合推理”AI模型Claude 3.7 Sonnet,并在融资层面取得重大进展,计划完成35亿美元的新一轮融资,估值将达615亿美元。以下是核心信息整理: 技术突破:双思维模型与代码能力 1. 混合…...

AI如何通过大数据分析提升制造效率和决策智能化
人工智能(AI)与大数据技术的融合,不仅重新定义了生产流程,更让企业实现了从“经验驱动”到“数据智能驱动”的跨越式升级。 从“模糊经验”到“精准洞察” 传统制造业依赖人工经验制定生产计划,但面对复杂多变的市…...
Java和JavaScript的比较
语言类型: java:面相对象的编程语言,属于强类型; javascript:基于对象的脚本语言,属于弱类型; 用途: java:适合用于后端开发,Android应用开发,…...

2. 在Linux 当中安装 Nginx(13步) 下载安装启动(详细说明+附加详细截图说明)
2. 在Linux 当中安装 Nginx(13步) 下载&安装&启动(详细说明附加详细截图说明) 文章目录 2. 在Linux 当中安装 Nginx(13步) 下载&安装&启动(详细说明附加详细截图说明)1. 在 Linxu 下安装 Nginx 的详细步骤2. 最后: 1. 在 Linxu 下安装 Nginx 的详细…...

大模型训练——pycharm连接实验室服务器
一、引言 我们在运行或者复现大佬论文代码的时候,笔记本的算力不够,需要使用实验室的服务器进行运行。可以直接在服务器的终端上执行,但是这样的话代码调试就不方便。而我们可以使用 pycharm 连接到服务器,既方便了代码调试&…...

实体机器人识别虚拟环境中障碍物
之前的内容已经实现了虚拟机器人识别实体机器人的功能,接下来就是实体机器人如何识别虚拟环境中的障碍物(包括虚拟环境中的障碍物和其他虚拟机器人)。 我做的是基于雷达的,所以主要要处理的是雷达的scan话题 我的虚拟机器人命名…...

修改`FSL Yocto Project Community BSP`用到的u-boot源码,使其能适配百问网(100ask)的开发板
前言 在博文 https://blog.csdn.net/wenhao_ir/article/details/145547974 中,我们利用官方提供的BSP(FSL Yocto Project Community BSP)构建了写到SD卡中的完整镜像,然后启动后发现存在不少问题,首要的问题就是u-boot不能识别网卡,在这篇博文中,我们就找到FSL Yocto Pro…...

Rk3568驱动开发_点亮led灯(手动挡)_5
1.MMU简介 完成虚拟空间到物理空间的映射 内存保护设立存储器的访问权限,设置虚拟存储空间的缓冲特性 stm32点灯可以直接操作寄存器,但是linux点灯不能直接访问寄存器,linux会使能mmu linux中操作的都是虚拟地址,要想访问物理地…...

十、大数据资源平台功能架构
一、大数据资源平台的功能架构图总体结构 大数据资源平台功能架构图 关键组件: 1.用户(顶行) 此部分标识与平台交互的各种利益相关者。 其中包括: 市领导 各部门分析师 区政府 外部组织 公民 开发人员 运营经理 2.功能模…...

LabVIEW不规则正弦波波峰波谷检测
在处理不规则正弦波信号时,准确检测波峰和波谷是分析和处理信号的关键任务。特别是在实验数据、传感器信号或其他非理想波形中,波峰和波谷的位置可以提供有价值的信息。然而,由于噪声干扰、信号畸变以及不规则性,波峰波谷的检测变…...

分布式主键生成服务
目录 一、使用线程安全的类——AtomicInteger或者AtomicLong 二、主键生成最简单写法(不推荐) 三、主键生成方法一:Long型id生成——雪花算法 四、主键生成方法二:流水号 (一)流水号概述 (二)添加配置 1.pom.xml 2.application.properties 3.创…...

如何通过网管提升运维效率?
网络系统在企业信息化系统扮演着越来越重要的作用,网络规模不断扩大,网络结构越来越复杂,传统的运维方式已经难以满足高效、稳定运行的要求。网管系统作为IT运维的重要工具,能够帮助企业实现网络的智能化管理,显著提升…...

(python)Arrow库使时间处理变得更简单
前言 Arrow库并不是简单的二次开发,而是在datetime的基础上进行了扩展和增强。它通过提供更简洁的API、强大的时区支持、丰富的格式化和解析功能以及人性化的显示,填补了datetime在某些功能上的空白。如果你需要更高效、更人性化的日期时间处理方式,Arrow库是一个不错的选择…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...