当前位置: 首页 > news >正文

能不能用Ai来开发出一款APP?很早就想过能不能用Ai来开发出一款APP?

现在AI这么流行,长青很早就想过能不能用Ai来开发出一款APP?

然后从1月份开始长青就开始着手用AI写一款音乐app,参考了落雪音乐的开发技术栈,长青这里也准备用ReactNative去写。

图片

首先声明一点,长青本身不会开发app的,只是以前上学学习过java、c#、H5、JS等编程技术(现在基本忘得差不多了)

选RN用来开发主要也是因为RN偏向前端,基本会点JS就能上手。

图片

不过长青为了确保能够看懂代码,还是去B站大学恶补了一下reactnative的基础教程。

图片

然后长青主要用到的AI包含:通义千问、claude、chatgpt、kimi、deepseek等等。

图片

为什么用这么多模型?

因为有时候你会感觉某个模型突然笨的要死,之后换另一个模型去刷代码(难道因为我用的免费版原因)

图片

接下来就是开始用AI来写代码啦!

   一脸懵逼期

因为没有开发过app的经验,所以刚开始真的是一脸懵逼。

只能让AI给我写一个小例子,然后根据实际再让ai去给我修改这个代码方案。

图片

然后修修改改写出了第一版简陋的页面。

图片

   渐入佳境

这个阶段我发现用claude+通义来跑代码特别舒服

图片

就开始用ai写各种页面,把音乐app的各种功能页面都写了出来。

图片

不过用着用着就会发现AI模型突然变傻了,中间只能来回换着ai模型来跑代码

图片

最逆天的就是有时候被一个bug卡好几天,然后突然这个ai模型开窍了给我解决了这个问题.......

图片

   填坑阶段

这个阶段开始发现由于之前不懂app开发,有些地方的代码逻辑和组件用的都有问题。

接下来就开始漫长的重构部分代码的路程......

图片

因为老早之前加了musicfree的作者,所以中途也开始请教大佬们一些不太懂的问题。

图片

   肝出来了

最后可算是整出来了,其中百分之99%的代码都是由AI来操作的。

我在这里扮演的角色就是把我的想法告诉它,引导它处理问题,告诉他报错的日志等等。

PS:软件中涉及的接口均是收集于网络

首页展示:

图片

搜索页展示:

图片

歌单页展示:

图片

本地音乐页展示:

图片

设置页面展示:

图片

总结来说软件 持下载内嵌歌词封面的音频、支持自建歌单和导入外部歌单、支持歌单批量下载、支持扫描本地音频、支持另外下载歌词 等等。

因为软件长青自始至终都是在红米K70上测试的,不知道其他机型有什么问题。

我用夸克网盘分享了「ReactNative」
链接:https://pan.quark.cn/s/ca2970226239

相关文章:

能不能用Ai来开发出一款APP?很早就想过能不能用Ai来开发出一款APP?

现在AI这么流行,长青很早就想过能不能用Ai来开发出一款APP? 然后从1月份开始长青就开始着手用AI写一款音乐app,参考了落雪音乐的开发技术栈,长青这里也准备用ReactNative去写。 首先声明一点,长青本身不会开发app的&a…...

lattice hdl实现spi接口

在lattice工具链中实现SPI接口通常涉及以下步骤: 定义硬件SPI接口的管脚。配置SPI时钟和模式。编写SPI主机或从机的控制逻辑。 展示了如何在Lattice工具链中使用HDL语言(例如Verilog)来配置SPI接口: lattice工程 顶层:spi_slave_top.v `timescale 1ns/ 1ps module spi_…...

超过DeepSeek、o3,Claude发布全球首个混合推理模型,并将完成新一轮35亿美元融资...

Anthropic于2025年2月25日发布全球首个“混合推理”AI模型Claude 3.7 Sonnet,并在融资层面取得重大进展,计划完成35亿美元的新一轮融资,估值将达615亿美元。以下是核心信息整理: 技术突破:双思维模型与代码能力 1. 混合…...

AI如何通过大数据分析提升制造效率和决策智能化

人工智能(AI)与大数据技术的融合,不仅重新定义了生产流程,更让企业实现了从“经验驱动”到“数据智能驱动”的跨越式升级。 从“模糊经验”到“精准洞察”​​ 传统制造业依赖人工经验制定生产计划,但面对复杂多变的市…...

Java和JavaScript的比较

语言类型: java:面相对象的编程语言,属于强类型; javascript:基于对象的脚本语言,属于弱类型; 用途: java:适合用于后端开发,Android应用开发&#xff0c…...

2. 在Linux 当中安装 Nginx(13步) 下载安装启动(详细说明+附加详细截图说明)

2. 在Linux 当中安装 Nginx(13步) 下载&安装&启动(详细说明附加详细截图说明) 文章目录 2. 在Linux 当中安装 Nginx(13步) 下载&安装&启动(详细说明附加详细截图说明)1. 在 Linxu 下安装 Nginx 的详细步骤2. 最后: 1. 在 Linxu 下安装 Nginx 的详细…...

大模型训练——pycharm连接实验室服务器

一、引言 我们在运行或者复现大佬论文代码的时候,笔记本的算力不够,需要使用实验室的服务器进行运行。可以直接在服务器的终端上执行,但是这样的话代码调试就不方便。而我们可以使用 pycharm 连接到服务器,既方便了代码调试&…...

实体机器人识别虚拟环境中障碍物

之前的内容已经实现了虚拟机器人识别实体机器人的功能,接下来就是实体机器人如何识别虚拟环境中的障碍物(包括虚拟环境中的障碍物和其他虚拟机器人)。 我做的是基于雷达的,所以主要要处理的是雷达的scan话题 我的虚拟机器人命名…...

修改`FSL Yocto Project Community BSP`用到的u-boot源码,使其能适配百问网(100ask)的开发板

前言 在博文 https://blog.csdn.net/wenhao_ir/article/details/145547974 中,我们利用官方提供的BSP(FSL Yocto Project Community BSP)构建了写到SD卡中的完整镜像,然后启动后发现存在不少问题,首要的问题就是u-boot不能识别网卡,在这篇博文中,我们就找到FSL Yocto Pro…...

Rk3568驱动开发_点亮led灯(手动挡)_5

1.MMU简介 完成虚拟空间到物理空间的映射 内存保护设立存储器的访问权限,设置虚拟存储空间的缓冲特性 stm32点灯可以直接操作寄存器,但是linux点灯不能直接访问寄存器,linux会使能mmu linux中操作的都是虚拟地址,要想访问物理地…...

十、大数据资源平台功能架构

一、大数据资源平台的功能架构图总体结构 大数据资源平台功能架构图 关键组件: 1.用户(顶行) 此部分标识与平台交互的各种利益相关者。 其中包括: 市领导 各部门分析师 区政府 外部组织 公民 开发人员 运营经理 2.功能模…...

LabVIEW不规则正弦波波峰波谷检测

在处理不规则正弦波信号时,准确检测波峰和波谷是分析和处理信号的关键任务。特别是在实验数据、传感器信号或其他非理想波形中,波峰和波谷的位置可以提供有价值的信息。然而,由于噪声干扰、信号畸变以及不规则性,波峰波谷的检测变…...

分布式主键生成服务

目录 一、使用线程安全的类——AtomicInteger或者AtomicLong 二、主键生成最简单写法(不推荐) 三、主键生成方法一:Long型id生成——雪花算法 四、主键生成方法二:流水号 (一)流水号概述 (二)添加配置 1.pom.xml 2.application.properties 3.创…...

如何通过网管提升运维效率?

网络系统在企业信息化系统扮演着越来越重要的作用,网络规模不断扩大,网络结构越来越复杂,传统的运维方式已经难以满足高效、稳定运行的要求。网管系统作为IT运维的重要工具,能够帮助企业实现网络的智能化管理,显著提升…...

(python)Arrow库使时间处理变得更简单

前言 Arrow库并不是简单的二次开发,而是在datetime的基础上进行了扩展和增强。它通过提供更简洁的API、强大的时区支持、丰富的格式化和解析功能以及人性化的显示,填补了datetime在某些功能上的空白。如果你需要更高效、更人性化的日期时间处理方式,Arrow库是一个不错的选择…...

机器学习数学基础:33.分半信度

分半信度(Split-Half Reliability)深度教程 专为零基础小白打造,全面掌握分半信度知识 一、深入理解分半信度 分半信度是一种用于评估测验内部一致性的重要方法,其核心思路在于将一个完整的测验拆分成两个部分,然后通…...

PyTorch 源码学习:GPU 内存管理之深入分析 CUDACachingAllocator

因引入 expandable_segments 机制,PyTorch 2.1.0 版本发生了较大变化。本文关注的是 PyTorch 原生的 GPU 内存管理机制,故研究的 PyTorch 版本为 2.0.0。代码地址: c10/cuda/CUDACachingAllocator.hc10/cuda/CUDACachingAllocator.cpp 更多内…...

0—QT ui界面一览

2025.2.26,感谢gpt4 1.控件盒子 1. Layouts(布局) 布局控件用于组织界面上的控件,确保它们的位置和排列方式合理。 Vertical Layout(垂直布局) :将控件按垂直方向排列。 建议:适…...

Jenkinsfile流水线构建教程

前言 Jenkins 是目前使用非常广泛的自动化流程的执行工具, 我们目前的一些自动化编译, 自动化测试都允许在 Jenkins 上面. 在 Jenkins 的术语里面, 一些自动化工作联合起来称之为流水线, 比如拉取代码, 编译, 运行自动化测试等. 本文的主要目的是引导你快速熟悉 Jenkinsfile …...

flex布局自定义一行几栏,靠左对齐===grid布局

模板 <div class"content"><div class"item">1222</div><div class"item">1222</div><div class"item">1222</div><div class"item">1222</div><div class"…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...