神经网络在电力电子与电机控制中的应用
神经网络(Neural Networks)简介
神经网络是一种受生物神经元启发的机器学习模型,能够通过大量数据学习输入与输出之间的非线性映射关系。其核心结构包括:
-
输入层:接收外部数据(如传感器信号、控制指令)。
-
隐藏层:通过激活函数(如ReLU、Sigmoid)提取数据特征,逐层传递信息。
-
输出层:生成预测或控制信号。
常用类型包括前馈神经网络(FNN)、循环神经网络(RNN)、卷积神经网络(CNN)和长短期记忆网络(LSTM)。在工程控制领域,神经网络因其强大的非线性建模能力和自适应学习特性被广泛应用。
在电力电子与电机控制中的应用
1. 电力电子系统
-
逆变器/变流器控制
-
传统PI控制器难以应对非线性负载变化,神经网络(如FNN、LSTM)可直接学习逆变器的动态特性,实现更快的动态响应和更低谐波失真。
-
案例:使用ANN预测开关时刻,优化PWM信号生成。
-
-
故障诊断与健康管理
-
基于电流/电压波形数据,训练CNN或RNN识别电力电子器件(如IGBT)的短路、开路故障,准确率可达95%以上。
-
-
光伏/储能系统优化
-
通过神经网络预测光照、温度对光伏输出的影响,结合MPPT(最大功率点跟踪)算法动态调整工作点。
-
2. 电机控制
-
无传感器速度控制
-
传统方法依赖编码器,神经网络(如FNN)可直接从电机电流/电压信号中估计转子位置和转速,降低成本并提高可靠性。
-
案例:永磁同步电机(PMSM)的无传感器控制中,ANN替代滑模观测器,减少抖振现象。
-
-
参数辨识与自适应控制
-
电机参数(如电感、电阻)随温度变化,神经网络在线学习参数漂移,实时调整控制策略。
-
案例:异步电机(IM)的在线参数辨识,提升矢量控制精度。
-
-
故障预测与容错控制
-
通过振动、电流信号训练LSTM网络,提前预测轴承磨损或绕组短路,触发容错控制策略。
-
应用优势与挑战
| 优势 | 挑战 |
|---|---|
| 1. 处理非线性、时变系统 | 1. 需要大量高质量训练数据 |
| 2. 减少对精确数学模型的依赖 | 2. 实时性要求高(需硬件加速) |
| 3. 自适应学习环境变化 | 3. 可解释性较差(黑箱问题) |
典型应用场景
-
电动汽车驱动系统
-
使用ANN优化电机效率,动态分配电池功率。
-
-
智能电网
-
基于LSTM预测负载需求,协调多台变流器运行。
-
-
工业机器人
-
神经网络补偿关节摩擦非线性,提升轨迹跟踪精度。
-
未来趋势
-
边缘计算与嵌入式部署:将轻量化神经网络(如TinyML)部署到DSP/FPGA,满足实时控制需求。
-
数字孪生融合:结合物理模型与神经网络,实现高精度系统仿真。
-
强化学习结合:通过强化学习(RL)动态优化神经网络参数,适应复杂工况。
如果需要具体案例代码或Simulink实现细节,可进一步探讨!
应用示例: 三相两电平并网逆变器电流闭环控制simulink仿真


电流跟踪效果
联系作者或者技术交流 请移步到作者置顶文章
相关文章:
神经网络在电力电子与电机控制中的应用
神经网络(Neural Networks)简介 神经网络是一种受生物神经元启发的机器学习模型,能够通过大量数据学习输入与输出之间的非线性映射关系。其核心结构包括: 输入层:接收外部数据(如传感器信号、控制指令&…...
llama-factory || AutoDL平台
报错如下: rootautodl-container-d83e478b47-3def8c49:~/LLaMA-Factory# llamafactory-cli webui * Running on local URL: http://0.0.0.0:7860Could not create share link. Missing file: /root/miniconda3/lib/python3.10/site-packages/gradio/frpc_linux_am…...
数学建模:MATLAB极限学习机解决回归问题
一、简述 极限学习机是一种用于训练单隐层前馈神经网络的算法,由输入层、隐藏层、输出层组成。 基本原理: 输入层接受传入的样本数据。 在训练过程中随机生成从输入层到隐藏层的所有连接权重以及每个隐藏层神经元的偏置值,这些参数在整个…...
力扣785. 判断二分图
力扣785. 判断二分图 题目 题目解析及思路 题目要求将所有节点分成两部分,每条边的两个端点都必须在不同集合中 二分图:BFS/DFS/并查集 因为图不一定联通,所以枚举所有点都做bfs(如果没联通的话) 代码 class Solution { public:bool is…...
【硬件工程师成长】之是否需要组合电容进行滤波的考虑
在电子电路设计中,判断是否需要使用组合电容进行滤波,需综合考虑以下因素: 1. 噪声频谱分析 高频与低频噪声共存:若电源或信号中同时存在低频(如工频纹波)和高频噪声(如开关电源的开关噪声、数字…...
Pythonweb开发框架—Flask工程创建和@app.route使用详解
1.创建工程 如果pycharm是专业版,直接NewProject—>Flask 填写工程name和location后,点击右下角【create】,就会新建一个flask工程,工程里默认会建好一个templates文件夹、static文件夹、一个app.py文件 templates࿱…...
005 公网访问 docker rocketmq
文章目录 创建自定义网络创建NameServer容器创建Broker容器正式开始启动 Nameserver 容器启动 Broker 容器并关联 Nameserverdocker exec -it rmqbroker vi /etc/rocketmq/broker.conf检查 namesrv 解析检查 Broker 注册状态Nameserver 日志Broker 日志检查容器日志手动指定 Br…...
C++11中的右值引用和完美转发
C11中的右值引用和完美转发 右值引用 右值引用是 C11 引入的一种新的引用类型,用 && 表示。它主要用于区分左值和右值,并且可以实现移动语义,避免不必要的深拷贝,提高程序的性能。左值通常是可以取地址的表达式…...
txt 转 json 使用python语言
需求: 把如下的txt文档转成json输出 代码 import jsondef txt_to_json(input_file, output_file):data_list []with open(input_file, r, encodingutf-8) as f:for line in f:# 分割数据并去除换行符parts line.strip().split(,)print(f"{parts}")print(type(par…...
Android Logcat 高效调试指南
工具概览 Logcat 是 Android SDK 提供的命令行日志工具,支持灵活过滤、格式定制和实时监控,官方文档详见 Android Developer。 基础用法 命令格式 [adb] logcat [<option>] ... [<filter-spec>] ... 执行方式 直接调用(通过ADB守…...
【Linux】从入门到精通:Make与Makefile完全指南
欢迎来到 CILMY23 的博客 🏆本篇主题为:从入门到精通:Make与Makefile完全指南 🏆个人主页:CILMY23-CSDN博客 🏆系列专栏:C | C语言 | Linux | Python | 数据结构和算法 | 算法专题 …...
leetcode0014 最长公共前缀 -easy
1 题目:最长公共前缀 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 示例 1: 输入:strs [“flower”,“flow”,“flight”] 输出:“fl” 示例 2: 输入&a…...
【星云 Orbit-F4 开发板】07. 用判断数据尾来接收据的串口通用程序框架
【星云 Orbit-F4 开发板】用判断数据尾来接收一串数据的串口通用程序框架 摘要 本文介绍了一种基于STM32F407微控制器的串口数据接收通用程序框架。该框架通过判断数据尾来实现一串数据的完整接收,适用于需要可靠数据传输的应用场景。本文从零开始,详细…...
LLVM - 编译器前端 - 将源文件转换为抽象语法树(一)
一:概述 编译器通常分为两部分——前端和后端。在本文中,我们将实现编程语言的前端部分——即主要处理源语言的部分。我们将学习现实世界编译器使用的技术,并将其应用到我们的编程语言中。 本文将从定义编程语言的语法开始,最终生成一个抽象语法树(AST),这是代码生成的基…...
02_NLP文本预处理之文本张量表示法
文本张量表示法 概念 将文本使用张量进行表示,一般将词汇表示为向量,称为词向量,再由各个词向量按顺序组成矩阵形成文本表示 例如: ["人生", "该", "如何", "起头"]># 每个词对应矩阵中的一个向量 [[1.32, 4,32, 0,32, 5.2],[3…...
深圳SMT贴片加工核心工艺解析
内容概要 深圳作为全球电子制造产业的核心集聚区,其SMT贴片加工技术始终引领行业创新方向。本文聚焦深圳电子制造企业在高密度、微型化组件加工中的核心工艺体系,系统解析从锡膏印刷到成品检测的全流程关键技术。通过梳理SMT产线中设备参数设定、工艺条…...
P8720 [蓝桥杯 2020 省 B2] 平面切分--set、pair
P8720 [蓝桥杯 2020 省 B2] 平面切分--set、pair 题目 分析一、pair1.1pair与vector的区别1.2 两者使用场景两者组合使用 二、set2.1核心特点2.2set的基本操作2.3 set vs unordered_set示例:统计唯一单词数代码 题目 分析 大佬写的很明白,看这儿 我讲讲…...
突破传统:用Polars解锁ICU医疗数据分析新范式
一、ICU数据革命的临界点 在重症监护室(ICU),每秒都在产生关乎生死的关键数据:从持续监测的生命体征到高频更新的实验室指标,从呼吸机参数到血管活性药物剂量,现代ICU每天产生的数据量级已突破TB级别。传统…...
命名实体识别与文本生成算法
在自然语言处理(NLP)的浩瀚星空中,命名实体识别(Named Entity Recognition, NER)与文本生成算法如同两颗璀璨的星辰,各自闪耀,又相互辉映,共同推动着人工智能技术在语言理解与生成领…...
10.3 指针进阶_代码分析
代码分析 9. 指针和数组代码解析一维数组字符数组字符串二维数组 10. 指针代码分析eg1eg2eg3eg4eg5eg6eg7eg8 10.1 指针进阶_数组指针 10.2 指针进阶_函数指针 9. 指针和数组代码解析 数组名arr是首元素地址 例外: 1. sizeof(arr),计算整个数组的大小&…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
