当前位置: 首页 > news >正文

数据结构(初阶)(七)----树和二叉树(堆,堆排序)

八,树与二叉树

概念与结构

树是⼀种⾮线性的数据结构,它是由 n(n>=0) 个有限结点组成⼀个具有层次关系的集合。把它叫做树是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,⽽叶朝下的。

• 有⼀个特殊的结点,称为根结点,根结点没有前驱结点。

• 除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1、T2、……、Tm ,其中每⼀个集合Ti(1 <= i <= m) ⼜是⼀棵结构与树类似的⼦树。每棵⼦树的根结点有且只有⼀个前驱,可以有 0 个或多个后继。因此,树是递归定义的。

树形结构中,⼦树之间不能有交集,否则就不是树形结构

⼦树是不相交的(如果存在相交就是图了)

除了根结点外,每个结点有且仅有⼀个⽗结点

⼀棵N个结点的树有N-1条边

树的相关术语

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

⽗结点/双亲结点:若⼀个结点含有⼦结点,则这个结点称为其⼦结点的⽗结点; 如上图:A是B的⽗结点

⼦结点/孩⼦结点:⼀个结点含有的⼦树的根结点称为该结点的⼦结点; 如上图:B是A的孩⼦结点

结点的度:⼀个结点有⼏个孩⼦,他的度就是多少;⽐如A的度为6,F的度为2,K的度为0

树的度:⼀棵树中,最⼤的结点的度称为树的度; 如上图:树的度为 6

叶⼦结点/终端结点:度为 0 的结点称为叶结点; 如上图: B、C、H、I… 等结点为叶结点

分⽀结点/⾮终端结点:度不为 0 的结点; 如上图: D、E、F、G… 等结点为分⽀结点

兄弟结点:具有相同⽗结点的结点互称为兄弟结点(亲兄弟); 如上图: B、C 是兄弟结点

结点的层次:从根开始定义起,根为第 1 层,根的⼦结点为第 2 层,以此类推;

树的⾼度或深度:树中结点的最⼤层次; 如上图:树的⾼度为 4

结点的祖先:从根到该结点所经分⽀上的所有结点;如上图: A 是所有结点的祖先

路径:⼀条从树中任意节点出发,沿⽗节点-⼦节点连接,达到任意节点的序列;⽐如A到Q的路径为:A-E-J-Q;H到Q的路径H-D-A-E-J-Q

⼦孙:以某结点为根的⼦树中任⼀结点都称为该结点的⼦孙。如上图:所有结点都是A的⼦孙

森林:由 m(m>0) 棵互不相交的树的集合称为森林;

树的表示

树有很多种表⽰⽅式如:双亲表⽰法,孩⼦表⽰法、孩⼦双亲表⽰法以及孩⼦兄弟表⽰法等。我们这⾥就简单的了解其中最常⽤的孩⼦兄弟表⽰法

struct TreeNode 
{ struct TreeNode* child; // 左边开始的第⼀个孩⼦结点 struct TreeNode* brother; // 指向其右边的下⼀个兄弟结点 int data; // 结点中的数据域 
};

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

二叉树

概念与结构

在树形结构中,我们最常⽤的就是⼆叉树,⼀棵⼆叉树是结点的⼀个有限集合,该集合由⼀个根结点 加上两棵别称为左⼦树和右⼦树的⼆叉树组成或者为空。

⼆叉树具备以下特点:

1,⼆叉树不存在度⼤于 2 的结点

2,⼆叉树的⼦树有左右之分,次序不能颠倒,因此⼆叉树是有序树

注意:对于任意的⼆叉树都是由以下⼏种情况复合⽽成的

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

满⼆叉树

⼀个⼆叉树,如果每⼀个层的结点数都达到最⼤值,则这个⼆叉树就是满⼆叉树。也就是说,如果⼀个⼆叉树的层数为 K ,且结点总数是 2k − 1 ,则它就是满⼆叉树。

完全⼆叉树

完全⼆叉树是效率很⾼的数据结构,完全⼆叉树是由满⼆叉树⽽引出来的。对于深度为 K 的,有 n 个

结点的⼆叉树,当且仅当其每⼀个结点都与深度为K的满⼆叉树中编号从 1 ⾄ n 的结点⼀⼀对应时称之为完全⼆叉树。要注意的是满⼆叉树是⼀种特殊的完全⼆叉树。

⼆叉树性质

根据满⼆叉树的特点可知:

1)若规定根结点的层数为 1 ,则⼀棵⾮空⼆叉树的第i层上最多有 2i−1 个结点

2)若规定根结点的层数为 1 ,则深度为 h 的⼆叉树的最⼤结点数是 2h − 1

3)若规定根结点的层数为 1 ,具有 n 个结点的满⼆叉树的深度 h = log2 (n + 1) ( log

以2为底, n+1 为对数)

⼆叉树存储结构

顺序结构
链式结构

实现顺序结构的二叉树

⼀般堆使⽤顺序结构的数组来存储数据,堆是⼀种特殊的⼆叉树,具有⼆叉树的特性的同时,还具备其他的特性。

小堆(小根堆):堆顶是堆里最小的数据

大堆(小根堆):堆顶是堆里最大的数据

堆的性质

堆中某个结点的值总是不⼤于或不⼩于其⽗结点的值;

堆总是⼀棵完全⼆叉树。

⼆叉树性质

对于具有 n 个结点的完全⼆叉树,如果按照从上⾄下从左⾄右的数组顺序对所有结点从

0开始编号,则对于序号为 i 的结点有:

1,若 i>0 , i 位置结点的双亲序号: (i-1)/2 ; i=0 , i 为根结点编号,⽆双亲结点

2,若 2i+1<n ,左孩⼦序号: 2i+1 , 2i+1>=n 否则⽆左孩⼦

3,若 2i+2<n ,右孩⼦序号: 2i+2 , 2i+2>=n 否则⽆右孩⼦

堆的实现

堆底层结构为数组

头文件Heap.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>//堆的结构
typedef int HPDataType;
typedef struct Heap
{HPDataType* arr;int size;		//有效数据个数int capacity;	//空间大小
}HP;
//初始化
void HPInit(HP* php);
//销毁
void HPDestory(HP* php);
//打印
void HPPrint(HP* php);
//入堆
void HPPush(HP* php, HPDataType x);
//判断堆是否为空
bool HPEmpty(HP* php);
//向下调整
void AdjustDowm(HPDataType* arr, int parent, int n);
//出堆
void HPPop(HP* php);
//取堆顶元素
HPDataType* HPTop(HP* php);
实现Heap.c
#define _CRT_SECURE_NO_WARNINGS
#include"Heap.h"//初始化
void HPInit(HP* php)
{assert(php);php->arr = NULL;php->size = php->capacity = 0;
}//销毁
void HPDestory(HP* php)
{assert(php);if (php->arr)free(php->arr);php->arr = NULL;php->size = php->capacity = 0;
}//打印
void HPPrint(HP* php)
{assert(php);for (int i = 0; i < php->size; i++){printf("%d ", php->arr[i]);}printf("\n");
}//交换
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//调整
void AdjustUp(HPDataType* arr,int child)
{int parent = (child - 1) / 2;while (child > 0){//控制小堆,大堆if (arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//入堆
void HPPush(HP* php, HPDataType x)
{assert(php);//判断空间if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* tmp = (HPDataType*)realloc(php->arr,sizeof(HPDataType) * newcapacity);if (tmp == NULL){perror("HPPush()::realloc fail");exit(1);}php->arr = tmp;php->capacity = newcapacity;}//插入php->arr[php->size] = x;//调整,向上调整AdjustUp(php->arr,php->size - 1);++php->size;
}//判断堆是否为空
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}//向下调整
void AdjustDowm(HPDataType* arr,int parent,int n)
{int child = 2 * parent + 1;while (child < n){//控制大堆,小堆//保证右孩子同样不越界if (child + 1 < n && arr[child] < arr[child + 1]){child++;}if (arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = 2 * parent + 1;}else{break;}}}//出堆
//出的是堆顶元素
//1,堆顶元素与最后一个(size-1)元素交换
//2,调整,向下调整,假设成大堆,比较左右孩子,较大的与父结点比较。
void HPPop(HP* php)
{//首先堆不能为空assert(!HPEmpty(php));//先交换Swap(&php->arr[0], &php->arr[php->size - 1]);--php->size;//调整AdjustDowm(php->arr,0,php->size);
}//取堆顶元素
HPDataType* HPTop(HP* php)
{assert(!HPEmpty(php));return php->arr[0];
}
测试文件test.c
#define _CRT_SECURE_NO_WARNINGS
#include"Heap.h"void test()
{HP hp;HPInit(&hp);HPPush(&hp, 15);HPPush(&hp, 10);HPPush(&hp, 56);HPPush(&hp, 70);HPPush(&hp, 45);HPPrint(&hp);//HPPop(&hp);//HPPop(&hp);//HPPop(&hp);//HPPrint(&hp);while (!HPEmpty(&hp)){int top = HPTop(&hp);printf("%d ", top);HPPop(&hp);}HPDestory(&hp);
}int main()
{test();return 0;
}

堆排序

//交换
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//向上调整
void AdjustUp(HPDataType* arr,int child)
{int parent = (child - 1) / 2;while (child > 0){//控制小堆<,大堆>if (arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//向下调整
void AdjustDowm(int* arr,int parent,int n)
{int child = 2 * parent + 1;while (child < n){//控制大堆<,小堆>//保证右孩子同样不越界if (child + 1 < n && arr[child] > arr[child + 1]){child++;}//大堆>,小堆<if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = 2 * parent + 1;}else{break;}}}//堆排序(借助堆的思想实现)
void HPSort2(int* arr, int n)
{建堆,向下调整,升序大堆,降序小堆//assert(arr);//for (int i = (n - 1 - 1) / 2; i >= 0; i--)//{//	AdjustDowm(arr, i, n);//}建堆,向上调整assert(arr);for (int i = 0; i < n; i++){AdjustUp(arr, i);}//堆排序int end = n - 1;while (end > 0){Swap(&arr[0],&arr[end]);AdjustDowm(arr, 0, end);end--;}
}int main()
{test();int arr[] = { 2,3,5,1,9,7,5,8,6,0 };int n = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");HPSort2(&arr, n);for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

我们可以发现建堆时,使用向上(向下)调整算法都可以,那么哪种更好一点呢?

从时间复杂度来进行比较,向上调整算法建堆的时间复杂度为O(n ∗ log2 n) ,向下调整算法建堆的时间复杂度为O(n),所以一般使用向下调整算法建堆

下面是分析过程:

向上调整算法建堆时间复杂度
向下调整算法建堆时间复杂度
TOP-K问题

n >> k

相关文章:

数据结构(初阶)(七)----树和二叉树(堆,堆排序)

八&#xff0c;树与二叉树 树 概念与结构 树是⼀种⾮线性的数据结构&#xff0c;它是由 n&#xff08;n>0&#xff09; 个有限结点组成⼀个具有层次关系的集合。把它叫做树是因为它看起来像⼀棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;⽽叶朝下的。 • 有⼀…...

图像分类项目1:基于卷积神经网络的动物图像分类

一、选题背景及动机 在现代社会中&#xff0c;图像分类是计算机视觉领域的一个重要任务。动物图像分类具有广泛的应用&#xff0c;例如生态学研究、动物保护、农业监测等。通过对动物图像进行自动分类&#xff0c;可以帮助人们更好地了解动物种类、数量和分布情况&#xff0c;…...

Kali Linux 2024.4版本全局代理(wide Proxy)配置,适用于浏览器、命令行

1. 网络拓扑介绍&#xff08;不使用虚拟机直接跳到2&#xff09; 虚拟机&#xff1a;VMware 17 Pro&#xff0c;为本机开启桥接模式。 我的究极套娃网络&#xff1a;手机V2rayNG代理端口为10808&#xff0c;开热点 -> 电脑连接wifi -> 虚拟机中运行kali 2. kali 配置…...

[Windows] 批量为视频或者音频生成字幕 video subtitle master 1.5.2

Video Subtitle Master 1.5.2 介绍 Video Subtitle Master 1.5.2 是一款功能强大的客户端工具&#xff0c;能够批量为视频或音频生成字幕&#xff0c;还支持批量将字幕翻译成其他语言。该工具具有跨平台性&#xff0c;无论是 mac 系统还是 windows 系统都能使用。 参考原文&a…...

不要升级,Flutter Debug 在 iOS 18.4 beta 无法运行,提示 mprotect failed: Permission denied

近期如果有开发者的 iOS 真机升级到 18.4 beta&#xff0c;大概率会发现在 debug 运行时会有 Permission denied 的相关错误提示&#xff0c;其实从 log 可以很直观看出来&#xff0c;就是 Dart VM 在初始化时&#xff0c;对内核文件「解释运行&#xff08;JIT&#xff09;」时…...

介绍 torch-mlir 从 pytorch 生态到 mlir 生态

一、引言 The Torch-MLIR project provides core infrastructure for bridging the PyTorch ecosystem and the MLIR ecosystem. For example, Torch-MLIR enables PyTorch models to be lowered to a few different MLIR dialects. Torch-MLIR does not attempt to provide a…...

upload

&#xff08;上传一句话木马&#xff0c;用蚁剑链接验证是否成功/传有回显的&#xff1a;<?php phpinfo();?>&#xff09; 学看代码 #function checkfile(){}&#xff1a;定义了一个名叫checkfile的函数 #var file方法.(获取名为‘upload_file’的元素)[获取哪些&…...

InterHand26M(handposeX-json 格式)数据集-release >> DataBall

DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;会员享有 百种数据集&#xff0c;持续增加中。 需要更多数据资源和技术解决方案&#xff0c;知识星球&#xff1a; “DataBall - X 数据球(free)” 贵在坚持&#xff01; ---------------------------------------…...

[Java基础] JVM常量池介绍(BeanUtils.copyProperties(source, target)中的属性值引用的是同一个对象吗)

文章目录 1. JVM内存模型2. 常量池中有什么类型&#xff1f;3. 常量池中真正存储的内容是什么4. 判断一个字符串(引用)是否在常量池中5. BeanUtils.copyProperties(source, target)中的属性值引用的是同一个对象吗&#xff1f;6. 获取堆内存使用情况、非堆内存使用情况 1. JVM内…...

`maturin`是什么:matu rus in python

maturin是什么 maturin 是一个用于构建和发布 Rust 编写的 Python 绑定库的工具。它简化了将 Rust 代码集成到 Python 项目中的过程,支持创建不同类型的 Python 包,如纯 Python 包、包含 **Rust (系统编程语言)**扩展模块的包等。以下为你详细介绍 maturin 的相关信息并举例…...

spring boot整合flyway实现数据的动态维护

1、简单介绍一下flyway Flyway 是一款开源的数据库版本控制工具&#xff0c;主要用于管理数据库结构的变更&#xff08;如创建表、修改字段、插入数据等&#xff09;。它通过跟踪和执行版本化的迁移脚本&#xff0c;帮助团队实现数据库变更的自动化。接下来简单介绍一下flyway…...

unity中使用spine详解

一.Spine概述 Spine 是一款针对游戏开发的 2D 骨骼动画编辑工具。 Spine 旨在提供更高效和简洁 的工作流程&#xff0c;以创建游戏所需的动画。 Spine原理&#xff1a;将一个模型&#xff0c;根据动画的需求分成一些骨骼&#xff0c;一个骨骼对应一张贴图&#xff0c;控制骨骼…...

14. LangChain项目实战1——基于公司制度RAG回答机器人

教学视频&#xff1a; 12. 基于Gradio搭建基于公司制度RAG_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV11VXRYTErZ/ 环境配置&#xff1a; python版本&#xff1a;3.10.8 服务器&#xff1a;Ubuntu 依赖包requirements.txt文件内容&#xff1a; aiofiles23.2.1 …...

利用STM32TIM自制延迟函数实验

一、实验目的 掌握STM32定时器&#xff08;TIM&#xff09;的工作原理及配置方法学习使用HAL库实现微秒级/毫秒级延时函数理解定时器中断服务程序的编写规范 二、实验原理 ​定时器基础&#xff1a; STM32定时器包含向上计数器、向下计数器、中心对齐模式通过预分频器&#x…...

创建一个MCP服务器,并在Cline中使用,增强自定义功能。

MCP介绍 MCP 是一个开放协议&#xff0c;它标准化了应用程序如何向LLMs提供上下文。可以将 MCP 视为 AI 应用程序的 USB-C 端口。正如 USB-C 提供了一种标准化的方法来将您的设备连接到各种外围设备和配件一样&#xff0c;MCP 提供了一种标准化的方法来将 AI 模型连接到不同的…...

Android Activity栈关系解析

在 Android 系统中&#xff0c;这些类共同构成了 Activity 任务栈管理的核心架构。它们的关系可以类比为一栋大楼的管理体系&#xff0c;每个类负责不同层级的任务。以下是它们的详细解释和实际场景示例&#xff1a; 1. ActivityRecord&#xff08;活动记录&#xff09; 是什么…...

java使用word模板填充内容,再生成pdf

1.word模板填充内容 使用EasyPoi写入Word文档。 import cn.afterturn.easypoi.word.WordExportUtil; import org.apache.commons.io.FileUtils; import org.apache.commons.io.IOUtils; import org.apache.poi.xwpf.usermodel.XWPFDocument;import java.io.File; import java…...

回归实战详细代码+解析:预测新冠感染人数

回归实战&#xff1a;预测新冠感染人数 先回顾下回归是个啥玩意 首先需要一组训练集&#xff0c;说人话就是通过一系列x[x1,x2…xn]通过神秘计算得到y的过程&#xff0c;当然人和机器现在都不知道什么计算是什么&#xff0c;这是一个黑箱。 黑箱比喻&#xff1a;把模型想象成自…...

AI人工智能机器学习之聚类分析

1、概要 本篇学习AI人工智能机器学习之聚类分析&#xff0c;以KMeans、AgglomerativeClustering、DBSCAN为例&#xff0c;从代码层面讲述机器学习中的聚类分析。 2、聚类分析 - 简介 聚类分析是一种无监督学习的方法&#xff0c;用于将数据集中的样本划分为不同的组&#xff…...

(下:补充——五个模型的理论基础)深度学习——图像分类篇章

目录 1.1 卷积神经网络基础 3.1 AlexNet网络结构详解与花分类数据集下载 4.1 VGG网络详解及感受野的计算 5.1 GoogLeNet网络详解 6.1 ResNet网络结构&#xff0c;BN以及迁移学习详解 总结&#xff08;可以直接看总结&#xff09; 1.1 卷积神经网络基础 视频讲解&#xf…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...