当前位置: 首页 > news >正文

实例分割 | yolov11训练自己的数据集

前言

因工作要求使用的都是yolov5系列的模型,今天学习一下最先进的yolov11,记录一下环境配置及训练过程。

1.项目下载及环境安装

源码位置:yolov11
在这里插入图片描述
可以看到,这里要求python版本大于等于3.8,我这里安装python3.10.

conda create -n yolov11 python=3.10
conda activate yolov11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

2.标注自己的数据集

标注实例分割数据集的工具有很多,这里建议labelme和AnyLabeling任意选一个。
如图所示,标注后的数据集是json格式的:
在这里插入图片描述
我们需要将其转成yolo系列需要的txt格式。
json转txt格式转化代码:

# json2txt.py
# json2txt.py
import cv2
import os
import json
import glob
import numpy as npclass_names = ["cls1_name", "cls2_name", "cls3_name", "cls4_name", "cls5_name"]def convert_json_label_to_yolov_seg_label():json_path = "F:/Desktop/hand/labels"  # 本地json路径json_files = glob.glob(json_path + "/*.json")# print(json_files)# 指定输出文件夹output_folder = "F:/Desktop/hand/labels_txt"  # txt存放路径if not os.path.exists(output_folder):os.makedirs(output_folder)for json_file in json_files:# print(json_file)with open(json_file, 'r') as f:json_info = json.load(f)img = cv2.imread(os.path.join(json_path, json_info["imagePath"]))height, width, _ = img.shapenp_w_h = np.array([[width, height]], np.int32)txt_file = os.path.join(output_folder, os.path.basename(json_file).replace(".json", ".txt"))with open(txt_file, "w") as f:for point_json in json_info["shapes"]:txt_content = ""np_points = np.array(point_json["points"], np.int32)label = point_json["label"]index = class_names.index(label)# print(type(label))norm_points = np_points / np_w_hnorm_points_list = norm_points.tolist()txt_content += str(index) + " " + " ".join([" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"f.write(txt_content)convert_json_label_to_yolov_seg_label()

转换后是这样的:
在这里插入图片描述
分割数据集,我们需要将转化成txt的数据集分割成训练集、验证集和测试集,这是分割代码:

# txt_split.py
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "hhh/images/"
label_original_path = "hhh/labels_txt/"cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.1
test_percent = 0.1def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.jpg'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.jpg'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.jpg'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()

3.编写训练代码并训练

我这里习惯使用代码训练,还有命令训练,如果感兴趣的朋友可以去官网了解。

# train.py
from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')  model.train(data=r'config.yaml',imgsz=640,epochs=800,single_cls=True,  batch=16,workers=10,device='0',)

配置文件:

# config.yaml
path: ../datasets/images  # 数据集所在路径
train: train  # 数据集路径下的train.txt
val: val  # 数据集路径下的val.txt
test: test  # 数据集路径下的test.txt# Classes
names:0: class1_name1: class2_name2: class3_name3: class4_name4: class5_name

这里的path改成你的数据集位置,如果txt_split.py在项目根目录下运行则不需要修改路径,只需要修改类别即可。
修改之后,只需要python train.py运行即可。

测试代码:

# test.py
from ultralytics import YOLO
# 加载训练好的模型,改为自己的路径
model = YOLO('runs/train/exp22/weights/best.pt')  #修改为训练好的路径
source = '11.jpg' #修改为自己的图片路径及文件名
# 运行推理,并附加参数
model.predict(source, save=True, imgsz=640)

转成onnx模型并运行:

yolo export model=runs/segment/train11/weights/best.pt imgsz=640 format=onnx opset=12 simplify
python examples/YOLOv8-Segmentation-ONNXRuntime-Python/main.py --model runs/segment/train5n/weights/bestv8.onnx

4.常见报错

RuntimeError: Trying to create tensor with negative dimension -37: [0, -37]
运行YOLOv8-Segmentation-ONNXRuntime-Python时报错,修改配置文件

参考

语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)
在这里插入图片描述
配置文件位置在ultralytics/cfg/datasets/,如果这里一直报错can't find file,就直接写绝对路径

总结

因为项目还没完成,主要精力在此项目中,过程写的有点仓促,后面会慢慢优化文章质量,补全没完成的部分。

相关文章:

实例分割 | yolov11训练自己的数据集

前言 因工作要求使用的都是yolov5系列的模型,今天学习一下最先进的yolov11,记录一下环境配置及训练过程。 1.项目下载及环境安装 源码位置:yolov11 可以看到,这里要求python版本大于等于3.8,我这里安装python3.10.…...

vue3:四嵌套路由的实现

一、前言 1、嵌套路由的含义 嵌套路由的核心思想是&#xff1a;在某个路由的组件内部&#xff0c;可以定义子路由&#xff0c;这些子路由会渲染在父路由组件的特定位置&#xff08;通常是 <router-view> 标签所在的位置&#xff09;。通过嵌套路由&#xff0c;你可以实…...

AIGC和搜索引擎的异同

AIGC&#xff08;生成式人工智能&#xff09;与搜索引擎的核心差异体现在信息处理方式和输出形态上&#xff0c;我们可以从以下维度对比&#xff1a; 一、工作原理的本质差异 信息检索机制 搜索引擎&#xff1a;基于关键词匹配&#xff08;如"中暑怎么办"→返回相关…...

ES批量查询

在 Elasticsearch 中&#xff0c;multi_search&#xff08;也称为 msearch&#xff09;是一种允许你在单个请求中执行多个搜索操作的 API。它可以显著减少网络开销&#xff0c;尤其是在需要执行多个查询时。multi_search 会将多个查询打包成一个请求发送给 Elasticsearch&#…...

Vue2学习

一、Vue3 基础 监视属性 天气案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>天气案例</…...

PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单

在 PySide中&#xff0c;contextMenuEvent() 是 QWidget 类&#xff08;以及继承自它的所有子类&#xff09;的一个事件处理方法&#xff0c;主要用于处理上下文菜单事件&#xff0c;也就是当用户在控件上右键点击时触发的事件。 • 通过重新定义contextMenuEvent()来实现自定…...

Storm实时流式计算系统(全解)——下

storm编程案例-网站访问来源实时统计-需求 storm编程-网站访问来源实时统计-代码实现 根据以上条件可以只写一个类&#xff0c;我们只需要写2个方法和一个main&#xff08;&#xff09;&#xff0c;一个读取/发射&#xff08;spout&#xff09;。 一个拿到数据统计后发到redis…...

配置Nginx日志url encode问题

文章目录 配置Nginx日志url encode问题方法1-lua方法2-set-misc-nginx-module 配置Nginx日志url encode问题 问题描述&#xff1a; 当自定义日志输出格式&#xff0c;需要输出http请求中url参数时&#xff0c;如果参数中包含中文&#xff0c;是会进行url encode的&#xff0c…...

JAVA SE 包装类和泛型

文章目录 &#x1f4d5;1. 包装类✏️1.1 基本数据类型和对应的包装类✏️1.2 装箱和拆箱✏️1.3 自动装箱和自动拆箱 &#x1f4d5;2. 泛型✏️2.1 泛型的语法✏️2.2 泛型类的使用✏️2.3 裸类型(Raw Type)✏️2.4 擦除机制✏️2.5 泛型的上界✏️2.6 泛型方法✏️2.7 通配符…...

基于Linux系统的物联网智能终端

背景 产品研发和项目研发有什么区别&#xff1f;一个令人发指的问题&#xff0c;刚开始工作时项目开发居多&#xff0c;认为项目开发和产品开发区别不大&#xff0c;待后来随着自身能力的提升&#xff0c;逐步感到要开发一个好产品还是比较难的&#xff0c;我认为项目开发的目的…...

从零开始开发纯血鸿蒙应用之语音朗读

从零开始开发纯血鸿蒙应用 〇、前言一、API 选型1、基本情况2、认识TextToSpeechEngine 二、功能集成实践1、改造右上角菜单2、实现语音播报功能2.1、语音引擎的获取和关闭2.2、设置待播报文本2.3、speak 目标文本2.4、设置语音回调 三、总结 〇、前言 中华汉字洋洋洒洒何其多…...

物联网小范围高精度GPS使用

在园区内实现小范围高精度GPS&#xff08;全球定位系统&#xff09;定位&#xff0c;通常需要结合多种技术来弥补传统GPS在精度和覆盖范围上的不足。以下是实现小范围高精度GPS定位的解决方案&#xff0c;包括技术选择、系统设计和应用场景。 一、技术选择 在园区内实现高精度…...

一次有趣的前后端跨越排查

进行前后端代码联调的时候&#xff0c;使用axios调用后端请求&#xff0c;因为都是本地进行联调&#xff0c;所以没有考虑跨域的问题&#xff0c;写了一个get的请求接口&#xff0c;请求后端时&#xff0c;突然跳出下面的问题&#xff1a; 错误的信息一看很像就是跨域的问题&…...

大语言模型(LLM)如何赋能时间序列分析?

引言 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在文本生成、推理和跨模态任务中展现了惊人能力。与此同时&#xff0c;时间序列分析作为工业、金融、物联网等领域的核心技术&#xff0c;长期依赖传统统计模型&#xff08;如ARIMA&#xff09;或深度学习模型&a…...

Kubernetes (K8S) 核心原理深度剖析:从架构设计到运行机制

Kubernetes(K8S)作为容器编排领域的“操作系统”,其设计和实现原理是开发者进阶的必修课。本文将从架构设计、核心组件协作、关键机制实现三个维度,结合源码逻辑与实战场景,分享 K8S 的底层运行原理。 一、Kubernetes 架构设计 1. 声明式 API 与控制器模式 K8S 的核心设…...

Excel 豆知识 - XLOOKUP 为啥会出 #N/A 错误

XLOOKUP有的时候会出 #VALUE! 这个错误。 因为这个XLOOUP有个参数叫 找不到时的返回值&#xff0c;那么为啥还会返回 #VALUE! 呢&#xff1f; 可能还有别的原因&#xff0c;但是主要原因应该就是 检索范围 和 返回范围 不同。 比如这里检索范围在 B列&#xff0c;是 4-21&…...

【深度学习】Hopfield网络:模拟联想记忆

Hopfield网络是一种经典的循环神经网络&#xff0c;由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆&#xff0c;类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释&#xff1a; 1. 核心思想 想象你看到一张模糊的老照片&#xff0c;虽然…...

Python可视化大框架的研究与应用

## 摘要 随着数据科学和人工智能的快速发展&#xff0c;数据可视化成为了数据分析中不可或缺的一部分。Python作为一种功能强大且易于学习的编程语言&#xff0c;提供了多种可视化工具和库。本文旨在探讨Python可视化的主要框架&#xff0c;分析其特点、应用场景以及未来发展趋…...

Java 泛型(Generics)详解与使用

一、什么是 Java 泛型&#xff1f; 泛型&#xff08;Generics&#xff09;是 Java 1.5 引入的一项重要特性&#xff0c;主要用于 类型参数化&#xff0c;允许在类、接口和方法定义时使用 类型参数&#xff08;Type Parameter&#xff09;&#xff0c;从而提高代码的复用性、类…...

七、Three.jsPBR材质与纹理贴图

1、PBR材质金属度和粗糙度 1、金属度metalness 金属度属性.metalness表示材质像金属的程度, 非金属材料,如木材或石材,使用0.0,金属使用1.0。 threejs的PBR材质&#xff0c;.metalness默认是0.5,0.0到1.0之间的值可用于生锈的金属外观 new THREE.MeshStandardMaterial({met…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...