实例分割 | yolov11训练自己的数据集
前言
因工作要求使用的都是yolov5系列的模型,今天学习一下最先进的yolov11,记录一下环境配置及训练过程。
1.项目下载及环境安装
源码位置:yolov11

可以看到,这里要求python版本大于等于3.8,我这里安装python3.10.
conda create -n yolov11 python=3.10
conda activate yolov11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
2.标注自己的数据集
标注实例分割数据集的工具有很多,这里建议labelme和AnyLabeling任意选一个。
如图所示,标注后的数据集是json格式的:

我们需要将其转成yolo系列需要的txt格式。
json转txt格式转化代码:
# json2txt.py
# json2txt.py
import cv2
import os
import json
import glob
import numpy as npclass_names = ["cls1_name", "cls2_name", "cls3_name", "cls4_name", "cls5_name"]def convert_json_label_to_yolov_seg_label():json_path = "F:/Desktop/hand/labels" # 本地json路径json_files = glob.glob(json_path + "/*.json")# print(json_files)# 指定输出文件夹output_folder = "F:/Desktop/hand/labels_txt" # txt存放路径if not os.path.exists(output_folder):os.makedirs(output_folder)for json_file in json_files:# print(json_file)with open(json_file, 'r') as f:json_info = json.load(f)img = cv2.imread(os.path.join(json_path, json_info["imagePath"]))height, width, _ = img.shapenp_w_h = np.array([[width, height]], np.int32)txt_file = os.path.join(output_folder, os.path.basename(json_file).replace(".json", ".txt"))with open(txt_file, "w") as f:for point_json in json_info["shapes"]:txt_content = ""np_points = np.array(point_json["points"], np.int32)label = point_json["label"]index = class_names.index(label)# print(type(label))norm_points = np_points / np_w_hnorm_points_list = norm_points.tolist()txt_content += str(index) + " " + " ".join([" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"f.write(txt_content)convert_json_label_to_yolov_seg_label()
转换后是这样的:

分割数据集,我们需要将转化成txt的数据集分割成训练集、验证集和测试集,这是分割代码:
# txt_split.py
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "hhh/images/"
label_original_path = "hhh/labels_txt/"cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.1
test_percent = 0.1def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.jpg'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.jpg'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.jpg'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()
3.编写训练代码并训练
我这里习惯使用代码训练,还有命令训练,如果感兴趣的朋友可以去官网了解。
# train.py
from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml') model.train(data=r'config.yaml',imgsz=640,epochs=800,single_cls=True, batch=16,workers=10,device='0',)
配置文件:
# config.yaml
path: ../datasets/images # 数据集所在路径
train: train # 数据集路径下的train.txt
val: val # 数据集路径下的val.txt
test: test # 数据集路径下的test.txt# Classes
names:0: class1_name1: class2_name2: class3_name3: class4_name4: class5_name
这里的path改成你的数据集位置,如果txt_split.py在项目根目录下运行则不需要修改路径,只需要修改类别即可。
修改之后,只需要python train.py运行即可。
测试代码:
# test.py
from ultralytics import YOLO
# 加载训练好的模型,改为自己的路径
model = YOLO('runs/train/exp22/weights/best.pt') #修改为训练好的路径
source = '11.jpg' #修改为自己的图片路径及文件名
# 运行推理,并附加参数
model.predict(source, save=True, imgsz=640)
转成onnx模型并运行:
yolo export model=runs/segment/train11/weights/best.pt imgsz=640 format=onnx opset=12 simplify
python examples/YOLOv8-Segmentation-ONNXRuntime-Python/main.py --model runs/segment/train5n/weights/bestv8.onnx
4.常见报错
RuntimeError: Trying to create tensor with negative dimension -37: [0, -37]
运行YOLOv8-Segmentation-ONNXRuntime-Python时报错,修改配置文件
参考
语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)

配置文件位置在ultralytics/cfg/datasets/,如果这里一直报错can't find file,就直接写绝对路径。
总结
因为项目还没完成,主要精力在此项目中,过程写的有点仓促,后面会慢慢优化文章质量,补全没完成的部分。
相关文章:
实例分割 | yolov11训练自己的数据集
前言 因工作要求使用的都是yolov5系列的模型,今天学习一下最先进的yolov11,记录一下环境配置及训练过程。 1.项目下载及环境安装 源码位置:yolov11 可以看到,这里要求python版本大于等于3.8,我这里安装python3.10.…...
vue3:四嵌套路由的实现
一、前言 1、嵌套路由的含义 嵌套路由的核心思想是:在某个路由的组件内部,可以定义子路由,这些子路由会渲染在父路由组件的特定位置(通常是 <router-view> 标签所在的位置)。通过嵌套路由,你可以实…...
AIGC和搜索引擎的异同
AIGC(生成式人工智能)与搜索引擎的核心差异体现在信息处理方式和输出形态上,我们可以从以下维度对比: 一、工作原理的本质差异 信息检索机制 搜索引擎:基于关键词匹配(如"中暑怎么办"→返回相关…...
ES批量查询
在 Elasticsearch 中,multi_search(也称为 msearch)是一种允许你在单个请求中执行多个搜索操作的 API。它可以显著减少网络开销,尤其是在需要执行多个查询时。multi_search 会将多个查询打包成一个请求发送给 Elasticsearch&#…...
Vue2学习
一、Vue3 基础 监视属性 天气案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>天气案例</…...
PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单
在 PySide中,contextMenuEvent() 是 QWidget 类(以及继承自它的所有子类)的一个事件处理方法,主要用于处理上下文菜单事件,也就是当用户在控件上右键点击时触发的事件。 • 通过重新定义contextMenuEvent()来实现自定…...
Storm实时流式计算系统(全解)——下
storm编程案例-网站访问来源实时统计-需求 storm编程-网站访问来源实时统计-代码实现 根据以上条件可以只写一个类,我们只需要写2个方法和一个main(),一个读取/发射(spout)。 一个拿到数据统计后发到redis…...
配置Nginx日志url encode问题
文章目录 配置Nginx日志url encode问题方法1-lua方法2-set-misc-nginx-module 配置Nginx日志url encode问题 问题描述: 当自定义日志输出格式,需要输出http请求中url参数时,如果参数中包含中文,是会进行url encode的,…...
JAVA SE 包装类和泛型
文章目录 📕1. 包装类✏️1.1 基本数据类型和对应的包装类✏️1.2 装箱和拆箱✏️1.3 自动装箱和自动拆箱 📕2. 泛型✏️2.1 泛型的语法✏️2.2 泛型类的使用✏️2.3 裸类型(Raw Type)✏️2.4 擦除机制✏️2.5 泛型的上界✏️2.6 泛型方法✏️2.7 通配符…...
基于Linux系统的物联网智能终端
背景 产品研发和项目研发有什么区别?一个令人发指的问题,刚开始工作时项目开发居多,认为项目开发和产品开发区别不大,待后来随着自身能力的提升,逐步感到要开发一个好产品还是比较难的,我认为项目开发的目的…...
从零开始开发纯血鸿蒙应用之语音朗读
从零开始开发纯血鸿蒙应用 〇、前言一、API 选型1、基本情况2、认识TextToSpeechEngine 二、功能集成实践1、改造右上角菜单2、实现语音播报功能2.1、语音引擎的获取和关闭2.2、设置待播报文本2.3、speak 目标文本2.4、设置语音回调 三、总结 〇、前言 中华汉字洋洋洒洒何其多…...
物联网小范围高精度GPS使用
在园区内实现小范围高精度GPS(全球定位系统)定位,通常需要结合多种技术来弥补传统GPS在精度和覆盖范围上的不足。以下是实现小范围高精度GPS定位的解决方案,包括技术选择、系统设计和应用场景。 一、技术选择 在园区内实现高精度…...
一次有趣的前后端跨越排查
进行前后端代码联调的时候,使用axios调用后端请求,因为都是本地进行联调,所以没有考虑跨域的问题,写了一个get的请求接口,请求后端时,突然跳出下面的问题: 错误的信息一看很像就是跨域的问题&…...
大语言模型(LLM)如何赋能时间序列分析?
引言 近年来,大语言模型(LLM)在文本生成、推理和跨模态任务中展现了惊人能力。与此同时,时间序列分析作为工业、金融、物联网等领域的核心技术,长期依赖传统统计模型(如ARIMA)或深度学习模型&a…...
Kubernetes (K8S) 核心原理深度剖析:从架构设计到运行机制
Kubernetes(K8S)作为容器编排领域的“操作系统”,其设计和实现原理是开发者进阶的必修课。本文将从架构设计、核心组件协作、关键机制实现三个维度,结合源码逻辑与实战场景,分享 K8S 的底层运行原理。 一、Kubernetes 架构设计 1. 声明式 API 与控制器模式 K8S 的核心设…...
Excel 豆知识 - XLOOKUP 为啥会出 #N/A 错误
XLOOKUP有的时候会出 #VALUE! 这个错误。 因为这个XLOOUP有个参数叫 找不到时的返回值,那么为啥还会返回 #VALUE! 呢? 可能还有别的原因,但是主要原因应该就是 检索范围 和 返回范围 不同。 比如这里检索范围在 B列,是 4-21&…...
【深度学习】Hopfield网络:模拟联想记忆
Hopfield网络是一种经典的循环神经网络,由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆,类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释: 1. 核心思想 想象你看到一张模糊的老照片,虽然…...
Python可视化大框架的研究与应用
## 摘要 随着数据科学和人工智能的快速发展,数据可视化成为了数据分析中不可或缺的一部分。Python作为一种功能强大且易于学习的编程语言,提供了多种可视化工具和库。本文旨在探讨Python可视化的主要框架,分析其特点、应用场景以及未来发展趋…...
Java 泛型(Generics)详解与使用
一、什么是 Java 泛型? 泛型(Generics)是 Java 1.5 引入的一项重要特性,主要用于 类型参数化,允许在类、接口和方法定义时使用 类型参数(Type Parameter),从而提高代码的复用性、类…...
七、Three.jsPBR材质与纹理贴图
1、PBR材质金属度和粗糙度 1、金属度metalness 金属度属性.metalness表示材质像金属的程度, 非金属材料,如木材或石材,使用0.0,金属使用1.0。 threejs的PBR材质,.metalness默认是0.5,0.0到1.0之间的值可用于生锈的金属外观 new THREE.MeshStandardMaterial({met…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
