高性能PHP框架webman爬虫引擎插件,如何爬取数据
文章精选推荐
1 JetBrains Ai assistant 编程工具让你的工作效率翻倍
2 Extra Icons:JetBrains IDE的图标增强神器
3 IDEA插件推荐-SequenceDiagram,自动生成时序图
4 BashSupport Pro 这个ides插件主要是用来干嘛的 ?
5 IDEA必装的插件:Spring Boot Helper的使用与功能特点
6 Ai assistant ,又是一个写代码神器
7 Cursor 设备ID修改器,你的Cursor又可以继续试用了
文章正文
在 webman
高性能 PHP 框架中,结合爬虫引擎插件(如 GuzzleHTTP
或 Symfony Panther
)可以轻松实现数据爬取。以下是一个完整的示例,展示如何使用 webman
和 GuzzleHTTP
插件来爬取网页数据。
1. 安装依赖
首先,确保你已经安装了 webman
框架和 GuzzleHTTP
插件。
composer create-project workerman/webman
cd webman
composer require guzzlehttp/guzzle
2. 创建爬虫服务
在 webman
中,可以创建一个服务类来处理爬虫逻辑。以下是一个简单的爬虫服务示例:
<?php
namespace app\service;use GuzzleHttp\Client;
use GuzzleHttp\Exception\GuzzleException;class SpiderService
{protected $client;public function __construct(){// 初始化 GuzzleHTTP 客户端$this->client = new Client(['timeout' => 10, // 设置超时时间]);}/*** 爬取网页内容** @param string $url 目标网址* @return string 返回网页内容* @throws GuzzleException*/public function crawl(string $url): string{$response = $this->client->request('GET', $url);return $response->getBody()->getContents();}/*** 解析 HTML 数据** @param string $html 网页内容* @return array 返回解析后的数据*/public function parseHtml(string $html): array{$dom = new \DOMDocument();@$dom->loadHTML($html); // 忽略 HTML 错误$xpath = new \DOMXPath($dom);// 示例:提取所有标题$titles = [];$nodes = $xpath->query('//h1'); // 查找所有 <h1> 标签foreach ($nodes as $node) {$titles[] = $node->nodeValue;}return $titles;}
}
3. 创建控制器
在 webman
中,控制器用于处理 HTTP 请求。以下是一个简单的控制器示例,用于调用爬虫服务并返回结果:
<?php
namespace app\controller;use app\service\SpiderService;
use support\Request;class SpiderController
{public function crawl(Request $request){$url = $request->get('url', 'https://example.com'); // 获取 URL 参数$spider = new SpiderService();try {// 爬取网页内容$html = $spider->crawl($url);// 解析 HTML 数据$data = $spider->parseHtml($html);// 返回 JSON 响应return json(['code' => 0,'msg' => 'success','data' => $data,]);} catch (\Exception $e) {return json(['code' => 500,'msg' => $e->getMessage(),]);}}
}
4. 配置路由
在 webman
中,路由用于将请求映射到控制器。打开 config/route.php
文件,添加以下路由:
<?php
use Webman\Route;Route::get('/crawl', [app\controller\SpiderController::class, 'crawl']);
5. 运行并测试
启动 webman
服务:
php start.php start
访问以下 URL 测试爬虫功能:
http://127.0.0.1:8787/crawl?url=https://example.com
如果一切正常,你会看到返回的 JSON 数据,包含从目标网页提取的标题。
6. 高级功能:动态渲染页面
如果需要爬取动态渲染的页面(如 JavaScript 生成的内容),可以使用 Symfony Panther
插件。以下是一个简单的示例:
安装 Symfony Panther
:
composer require symfony/panther
修改爬虫服务:
<?php
namespace app\service;use Symfony\Component\Panther\PantherTestCase;class SpiderService
{public function crawlDynamic(string $url): array{$client = PantherTestCase::createPantherClient();$crawler = $client->request('GET', $url);// 等待页面加载完成$client->waitFor('.dynamic-content'); // 等待某个动态内容加载// 提取数据$titles = $crawler->filter('h1')->each(function ($node) {return $node->text();});return $titles;}
}
在控制器中调用:
public function crawlDynamic(Request $request)
{$url = $request->get('url', 'https://example.com');$spider = new SpiderService();try {$data = $spider->crawlDynamic($url);return json(['code' => 0,'msg' => 'success','data' => $data,]);} catch (\Exception $e) {return json(['code' => 500,'msg' => $e->getMessage(),]);}
}
7. 总结
通过 webman
和 GuzzleHTTP
或 Symfony Panther
,你可以轻松实现高性能的爬虫功能:
- 使用
GuzzleHTTP
爬取静态页面。 - 使用
Symfony Panther
爬取动态渲染的页面。 - 结合
webman
的路由和控制器,快速构建爬虫 API。
根据实际需求,可以进一步优化爬虫的性能和功能,例如:
- 使用队列异步处理爬取任务。
- 添加代理和用户代理(User-Agent)支持。
- 实现分布式爬虫架构。
相关文章:
高性能PHP框架webman爬虫引擎插件,如何爬取数据
文章精选推荐 1 JetBrains Ai assistant 编程工具让你的工作效率翻倍 2 Extra Icons:JetBrains IDE的图标增强神器 3 IDEA插件推荐-SequenceDiagram,自动生成时序图 4 BashSupport Pro 这个ides插件主要是用来干嘛的 ? 5 IDEA必装的插件&…...

【2025年后端开发终极指南:云原生、AI融合与性能优化实战】
一、2025年后端开发的五大核心趋势 1. 云原生架构的全面普及 云原生(Cloud Native)已经成为企业级应用的核心底座。通过容器化技术(DockerKubernetes)和微服务架构,开发者能够实现应用的快速部署、弹性伸缩和故障自愈…...

健康养生:开启活力人生的钥匙
在这个瞬息万变的时代,人们愈发珍视健康。健康养生,宛如一把神奇的钥匙,为我们打开通往活力人生的大门,全方位呵护身心,提升生活品质。 从饮食层面看,均衡膳食是核心。每餐力求包含碳水化合物、蛋白质、脂…...

vue2+ele-ui实践
前言:真理先于实践,实践发现真理,再实践检验真理 环境:vue2 & element-ui 正片: Select 选择器 简称 下拉框 下拉框完整的使用循环 下拉框 → 点击下拉框 → 展示数据 → 选择数据 → 下拉框显示数据 核心具有…...

三维重建(十五)——多尺度(coarse-to-fine)
文章目录 一、多尺度与图像金字塔:从全局结构到局部细节二、特征提取与匹配2.1 从数据采集的角度2.2 从数据增强的角度2.3 从特征提取的方式三、以多尺度的方式使用特征3.1 特征提取与匹配3.1.1 多尺度特征检测3.1.2 金字塔匹配3.2 深度估计与立体匹配3.2.1 多尺度立体匹配3.2…...

SparkStreaming之04:调优
SparkStreaming调优 一 、要点 4.1 SparkStreaming运行原理 深入理解 4.2 调优策略 4.2.1 调整BlockReceiver的数量 案例演示: object MultiReceiverNetworkWordCount {def main(args: Array[String]) {val sparkConf new SparkConf().setAppName("Networ…...

勿以危小而为之勿以避率而不为
《故事汇之:所见/所闻/所历/所想》:《公园散步与小雨遇记》(二) 就差一点到山顶了,路上碰到一阿姨,她说等会儿要下大雨了,让我不要往上走了,我犹豫了一会儿,还是听劝地返…...

JavaWeb后端基础(4)
这一篇就开始是做一个项目了,在项目里学习,我主要记录在学习过程中遇到的问题,以及一些知识点 Restful风格 一种软件架构风格 在REST风格的URL中,通过四种请求方式,来操作数据的增删改查。 GET : 查询 …...

SpringBoot调用DeepSeek
引入依赖 <dependency><groupId>io.github.pig-mesh.ai</groupId><artifactId>deepseek-spring-boot-starter</artifactId><version>1.4.5</version> </dependency>配置 deepseek:api-key: sk-******base-url: https://api.…...

记录一下本地部署Dify的坑
1. 截止2025-3-4为止,请注意,不要直接拉Dify的1.0.0版本。请先试用0.15.3版本。1.0.0有一个bug需要解决。[PANIC]failed to init dify plugin db: failed to connect to hostdb userpostgres databasepostgres Issue #14707 langgenius/dify GitHub …...

LC109. 有序链表转换平衡二叉搜索树
LC109. 有序链表转换平衡二叉搜索树 题目要求(一)快慢指针1. 理解问题2. 解决思路3. 具体步骤4. 代码实现5. 复杂度分析6. 示例解释7. 总结 LC109. 有序链表转换平衡二叉搜索树 题目要求 (一)快慢指针 要将一个按升序排列的单链表转换为平衡的二叉搜索树(BST&…...
Hutool一个类型转换工具类 `Convert`,
Hutool 是一个非常实用的Java工具库,旨在简化Java开发中的常见任务。它包含了一个类型转换工具类 Convert,可以帮助开发者轻松地进行各种类型之间的转换。以下是一些使用 Convert 类进行类型转换的例子: 基本类型转换 假设你需要将一个字符…...

基于eRDMA实测DeepSeek开源的3FS
DeepSeek昨天开源了3FS分布式文件系统, 通过180个存储节点提供了 6.6TiB/s的存储性能, 全面支持大模型的训练和推理的KVCache转存以及向量数据库等能力, 每个客户端节点支持40GB/s峰值吞吐用于KVCache查找. 发布后, 我们在阿里云ECS上进行了快速的复现, 并进行了性能测试, ECS…...

【Linux篇】第一个系统程序 - 进度条
文章目录 1.回车与换行2.行缓冲区3.倒计时程序4.进度条 1.回车与换行 回车的概念: 回到当前行的最开始 \r换行的概念: 换到当前行的下一行\n 2.行缓冲区 当我们运行下面这段程序时,我们会发现屏幕上首先会打印出hello world!,再过两秒后程序结束。 当我们把\n去掉…...

VLM-E2E:通过多模态驾驶员注意融合增强端到端自动驾驶
25年2月来自香港科大广州分校、理想汽车和厦门大学的论文“VLM-E2E: Enhancing End-to-End Autonomous Driving with Multimodal Driver Attention Fusion”。 人类驾驶员能够利用丰富的注意语义,熟练地应对复杂场景,但当前的自动驾驶系统难以复制这种能…...

如何将飞书多维表格与DeepSeek R1结合使用:效率提升的完美搭档
将飞书的多维表格与DeepSeek R1结合使用,就像为你的数据管理和分析之旅装上一台涡轮增压器。两者的合作,不仅仅在速度上让人耳目一新,更是将智能化分析带入了日常的工作场景。以下是它们如何相辅相成并改变我们工作方式的一些分享。 --- 在…...

Kali CentOs 7代理
工具v2↓ kali_IP段v2端口例子<1> kali_IP段v2端口例子<2> CentOs 7 //编辑配置文件 vi /etc/profile//在该配置文件的最后添加代理配置 export http_proxyhttp://ip:port //代理服务器ip地址和端口号 export https_proxyhttp://ip:port //代理服务器ip地址和…...

Zookeeper 的核心引擎:深入解析 ZAB 协议
#作者:张桐瑞 文章目录 前言ZAB 协议算法崩溃恢复选票结构选票筛选消息广播 前言 ZooKeeper 最核心的作用就是保证分布式系统的数据一致性,而无论是处理来自客户端的会话请求时,还是集群 Leader 节点发生重新选举时,都会产生数据…...
L3-001 凑零钱
L3-001 凑零钱 - 团体程序设计天梯赛-练习集 n, m map(int, input().split()) a list(map(int, input().split())) a.sort() f [[] for _ in range(m 1)] f[0] [0] for i in a:for j in range(m, i - 1, -1):if f[j - i]:if not f[j] or f[j] > f[j - i] [i]:f[j] f…...

命名管道(用命名管道模拟server和client之间的通信)
目录 命名管道创建命名管道使用命令行创建命名管道(FIFO)在程序中创建 命名管道的打开规则用命名管道实现server和client通信 命名管道 bash进程并不会给我们写的两个不同的程序创建通信的管道,即使这两个进程看起来好像都是bash的子进程&am…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...